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Style of Course

• Graduate level course
• Give students an overview of topics
• Dig deep into one topic for final project
• Assume students are mathematically mature
➡ Goal is to understand basic concepts
➡ Understand specific mathematical details depending on 

your interest



Grading Breakdown

• Participation    (20%)
• Mini-quizzes (10%)
• Final Project (70%)



Paper Reading & Discussion

• Paper Reading Course
➡ Reading assignments for each lecture
➡ Lectures more like discussion

• Student presentations
➡ Presentation schedule signup soon
➡ Present in groups
➡ Can choose which paper(s) to present



Mini-quizzes

• Evening after every lecture
➡ Very short
➡ Easy if you read material & attended lecture

• Released via Piazza
➡ Also use Piazza for Q&A



Final Project

• Can be on any topic related to the course
• Work in groups
• Will release timeline of progress reports soon



Topics

• Graphical Models

• Inference Methods
• Message Passing, Integer Programs, Dynamic Programming, Variational 

Methods

• Classical Discriminative Learning
• Structured SVM, Structured Perceptron, Conditional Random Fields

• Non-Linear Approaches
• Structured Random Forests, Deep Structured Prediction

• More Complex Structures
• Hierarchical Classification, Sequence Prediction/Generation

• Applications: Computer Vision, Speech Recognition, NLP, etc.



Focus of Course

• Rigorous algorithm design
➡ Math intensive, but nothing too hard
➡ Will walk through relevant math in class

• Apply to interesting applications
➡ What are the right ways to model a problem?



What Does Rigorous Mean?

• Formal model
➡ Explicitly state your assumptions

• Rigorously reason about how your algorithm solves the model
➡ Sometimes with provable guarantees

• Argue that your model is a reasonable one



What Makes a Good Final Project?

• Pure Theory
➡ Study proof techniques, try to extend proof, or apply to new 

setting

• Algorithms
➡ Extend algorithms, design new ones, for new settings

• Modeling
➡ Model new setting, what are the right assumptions?



Outline

• First two lectures
➡ Review basic methods

• Topics/readings chosen by students
➡ With curating from instructors & TAs
➡ List of papers will be on website
‣ But is negotiable



Introduction to Structured Prediction



Basic Formulation

• "Normal" Machine Learning:
➡ Inputs X can be any kinds of objects
➡ Output    is a real number
‣ classification, regression, …

• Structured Output Learning:
➡ Inputs X can be any kinds of objects
➡ Outputs           are complex (structured) objects
‣ images, text, audio, folds of a protein, …

f : X ! R

f : X ! Y

y 2 Y

y



Example: Image SegmentationCorrelated labels for nearby regions

Person

Chair

Person

Bottle

Li et al, CVPR 2010
Li et al, 2010



Example: Part-of-Speech Tagging
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Part-Of-Speech Tagging

INPUT

Profits soared at Boeing Co., easily topping

forecasts on Wall Street, as their CEO Alan

Mulally announced first quarter results.

OUTPUT

Profits/N soared/V at/P Boeing/N Co./N ,/,

easily/ADV topping/V forecasts/N on/P

Wall/N Street/N ,/, as/P their/POSS CEO/N

Alan/N Mulally/N announced/V first/ADJ

quarter/N results/N ./.

N =  noun
V =  verb
P =  preposition
ADV =  adverb
...

[Example taken

 from Michael Collins]

Challenge:

Predict a tag sequence

• R. Garside, The CLAWS Word-tagging System. In: R. Garside, G. Leech and G. Sampson (eds),  The Computational
Analysis of English: A Corpus-based Approach. London: Longman, 1987.

• Y.Altun, I. Tsochantaridis, T. Hofmann, Hidden Markov Support Vector Machines, ICML, 2003



<act=puppy,*pre=sit,*loc=house>*
<act=dog,*pre=sit,*loc=bed>*

Our$Approach$(Generated$Tuples)$

Top$5$sentences$generated$using$CNNS$

<act=boy,*pre=sit,*loc=street>*
<act=boy,*pre=sit,*loc=soccer>*

Our$Approach$(Generated$Tuples)$

a*man*and*woman*laying*down*to*the*couch*
with*a*bed.*
a*man*laying*on*top*of*a*sofa*with*his*dog.*
a*man*laying*on*the*couch*with*his*dog.*
a*man*is*laying*on*the*bed*of*a*sofa.*
a*man*and*dog*bed*in*the*back*of*a*sofa.**

a*young*woman*wearing*a*pink*and*standing*
in*front*of*a*metal*shoe.*
a*boy*in*blue*shirt*and*shorts*is*holding*a*
sword*to*pick*up*two*children*in*a*ba<ng*
posi=on.*
a*young*boy*holding*something*in*a*ba<ng*
cage.*
a*boy*standing*in*a*gym*with*a*toy*gun.*
a*li>le*boy*is*holding*a*basketball,*looking*at*
the*ground.**

Top$5$sentences$generated$using$CNNS$

Figure 1: Automatic Tuple Generation. The proposed approach allows generating semantic tuples that have not been
jointly observed before. For instance, in the left test image, the joint tuples hpuppy, sit, housei and hdog, sit, bedi
are not present in the training set, but our compositional approach can generate them.

tentials �(y, x) of the form v|
y

Wx, where v
y

2 IRn is
some real vector representation of an argument l 2 L and
x 2 IRd is a d dimensional feature representation of an
image. Similarly, the binary potentials ↵(y, y0) will be of
the form v|

y

Zv0
y

for a pair of arguments (y, y0). The rank
of W and Z can be interpreted as the intrinsic dimension-
ality of a low-dimensional embedding of the inputs and
arguments feature representation. Thus, if we want com-
putationally efficient models (i.e. few features) it is natu-
ral to use the rank of W and Z as a complexity penalty.
Since using the rank would lead to a non-convex problem,
we use instead the nuclear norm as a convex relaxation.
We conduct experiments with two different feature rep-
resentations of the outputs and show that integrating an
output feature representation in the structured prediction
model leads to better overall predictions. We also con-
clude from our results that the best output representation
is different for each argument type.
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Figure 2: Overview of our approach.

2 Semantic Tuple Image Annotation

2.1 Task

We will address the task of predicting semantic tuples for
images. Following [4], we will focus on a simple semantic
representation that considers three basic arguments: pred-

2

Example: Image Caption Generation

Quattoni et al, 2015



Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT1 , AKATA2 , XCYAN1 , LLAJAN1

Honglak Lee, Bernt Schiele HONGLAK1 , SCHIELE2

1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)
2 Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)

Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cate-
gories such as faces, album covers, room interi-
ors etc. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”.

A large body of work in computer vision studies attribute
representations - distinguishing characteristics of visual ob-
ject categories encoded into a vector (Lampert et al., 2013),
in particular to enable zero-shot visual recognition (Fu
et al., 2014; Akata et al., 2015), and recently for conditional
image generation (Yan et al., 2015).

While the discriminative power and strong generalization
properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink 
breast and crown, and black 
primaries and secondaries.

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories. Right:
captions are from training set categories.

guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
tures to synthesize a compelling image that a human might
mistake for real. Fortunately, deep learning has enabled
enormous progress in both subproblems - natural language
representation and image synthesis - in the previous several

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT1 , AKATA2 , XCYAN1 , LLAJAN1

Honglak Lee, Bernt Schiele HONGLAK1 , SCHIELE2

1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)
2 Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)

Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cate-
gories such as faces, album covers, room interi-
ors etc. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”.

A large body of work in computer vision studies attribute
representations - distinguishing characteristics of visual ob-
ject categories encoded into a vector (Lampert et al., 2013),
in particular to enable zero-shot visual recognition (Fu
et al., 2014; Akata et al., 2015), and recently for conditional
image generation (Yan et al., 2015).

While the discriminative power and strong generalization
properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

the flower has petals that 
are bright pinkish purple 
with white stigma

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories. Right:
captions are from training set categories.

guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
tures to synthesize a compelling image that a human might
mistake for real. Fortunately, deep learning has enabled
enormous progress in both subproblems - natural language
representation and image synthesis - in the previous several

Example: Image Generation From Text

Reed et al, 2016



Example: Protein Folding

http://titan.princeton.edu/research/highlights/?n=11

http://titan.princeton.edu/research/highlights/?n=11


Example: Machine Translation



Example: Robot Planning



Under review as a conference paper at ICLR 2017

b)  simulated trajectories c)  real trajectoriesa)  10 x 20-frame lookaheads for test flies

Figure 6: a) 10 x 20-frame lookaheads (simulations) for each test fly from its current location, demonstrating
the non-deterministic nature of the motion prediction. The ground truth 20-frame future trajectory is outlined
in black for comparison. b) shows trajectories of 20 flies simulated for 1000 frames, and c) shows 1000-frame
trajectories for 20 real flies interacting. The simulation shows that the model has learnt a preference for staying
near the boundary and to avoid walking through the boundary.

“e”

“s”

“r”

generated text character injectionsoriginal text

“e”

“s”

“r”

generated text character injectionsoriginal text generated text character injections

Figure 7: Left: Text generated by our model, one vector at a time (approximately 20 vectors per character).
Right: Text generated by the same model while ”activating” character classification units of the model during
simulation, shown in two lines per character.
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Figure 8: Comparison between synthetic fly (ground truth) and simulation by our model. The wing angles,
distance to object, and left/right turn show the agent’s motion over time, and the two hidden units indicate that
the model has learnt to represent control laws 4 and 5 used to generate the synthetic trajectories.

5.4 DISCOVERY

We motivated the structure of our network, specifically the diagonal connections between discrim-
inative and generative cells, with the intuition that it would allow higher levels of the network to
better represent high level phenomena. To verify this we train models to only predict future motion,
with no classification target, and visualize what the hidden states capture. We apply the model to
[x, v], obtaining hidden state vectors hl and ĥ

l, l 2 {1, ..., L}, and prediction x̂, map the data points
(time steps of each fly/writer) from each state to 2 dimensions using t-distributed stochastic neighbor
embedding (tSNE, Maaten & Hinton (2008)), and plot them in colors based on known phenomena.

9

Under review as a conference paper at ICLR 2017

4 DATA

Our framework is agent centric, it models the behavior of a single agent based on how it moves and
experiences the world including other agents. It is applicable to any data that can be represented in
terms of motor control (e.g. joystick controller), and sensory input that captures context from the
environment (e.g. 1st person camera). We test our model on two types of data, fruit fly behavior
and online handwriting. Both can be thought of as a type of behavior represented in the form of
trajectories, but the two are complementary: First, flies behave spontaneously, performing actions
of interest sporadically and in response to its environment, while handwritten text is intensional and
highly structured. Second, handwriting varies significantly between different writers in terms of size,
speed, slant, and proportions, while inter-fly variation is relatively small. With the datasets selected
for our experiments, listed below, we are interested in answering the following questions: 1) does
motion prediction improve action classification, 2) can the model generate realistic simulations (does
it learn the sensory-motor control), and 3) can the model discover novel behavioral phenomena?

Fly-vs-fly (Eyjolfsdottir et al., 2014) contains pairs of fruit flies engaging in 10 labeled courtship-
and aggressive behaviors. We include this dataset in our experiments to see how our model compares
with our previous action detection work which relies on handcrafted window features.

FlyBowl is a video of 10 male and 10 female fruit flies interacting and is labeled with male wing
extensions which is part of their courtship behavior. With this dataset we were particularly interested
in whether our model could simulate a virtual fly in a complex, dynamic environment.

SynthFly is a synthetic dataset containing a single fly moving inside of a rectangular chamber with
a stationary object located in the center. The fly is synthesized to move according to the control laws
listed in Figure 2. The purpose of this dataset is to test whether our model could learn generative
control rules, particularly ones that enforce non-deterministic behavior (see laws 4 and 5).

IAM-OnDB (Liwicki & Bunke, 2005) contains handwritten text from 195 different writers, acquired
using a smart whiteboard that records a list of (x, y) coordinates for each pen stroke. The data is
weakly labeled, with each sequence separated into short lines of transcribed text. For consistency
with our framework we hand annotated strokes of 10 writers, marking the start and end of the 26
lower case characters, which we use along with data from 35 unlabeled writers for our experiments.

All data, along with details about training and test splits, will be available in supplementary material.

Fly-vs-Fly FlyBowl IAM-OnDB

total # 
frames # trials # agents

per trial
# labeled 
actions

total # 
instances % frames

Fly-vs-Fly 3.7M 47 2 10 8599 10

FlyBowl 0.6M 1 20 1 961 5

SynthFly 0.4M 4 1 0 0 0

IAM-OnDB* 1.5M 45 1 26 12049 88

SynthFly - control laws:
 1) walk forward with random noise 
 2) at wall, rotate in direction of least resistance 
 3) when object in front visual field, walk towards it 
 4) extend either left or right wing (random) 
 5) at object, rotate left or right (alternating) 
 6) repeat 1)

Figure 2: Snapshots from the three labeled datsets used for our evaluation and a list of control laws used to
generate synthetic fly trajectories. The table summarizes the statistics of each experimental dataset, where total
# frames sums over all trials (videos / text documents) within an experiment and agents within a trial, total #
instances sums over all action classes, and % frames is the percent of frames in labeled sequences containing
actions of interest. IAM-OnDB* is a subset of IAM-OnDB with additional annotations for 10 of its trials.

5

Example: Behavior Modeling

Eyjolfsdottir et al, 2017



Structured Prediction Problems

• Inference/Prediction
➡ Given input X and learned model, predict output Y

• Learning/Training
➡ Learn model parameters w from training data



Probabilistic Graphical Models

Recommended textbook: Probabilistic Graphical Models: 
Principles and Techniques by Koller and Friedman



Probabilistic Graphical Models

• Variables X, Y, and Z
• Encode relationships between variables. 
• Graph represents a set of independences and factorizes a 

distribution.

• Directed graphical model and undirected graphical model

X

Y Z

X

Y Z



Conditional Independence

• Recall that two events A and B are independent if

  and we denote it as 

• Two events A and B are conditionally independent given an 
event C if

and we denote it as

P (A \B) = P (A)P (B), or equivalently,P (A|B) = P (A)

P (A \B|C) = P (A|C)P (B|C), or equivalently,P (A|B,C) = P (A|C)

A?B

A?B|C



Directed Graphical Models

• Also called Bayesian Networks.
• Include: Naive Bayes, HMM, …
• Recall 

• We have 

     where         are variables of parents.
• Formally, a directed graph G=(V,E) with random variables for each 

node in V and conditional probability distribution per node: p(node | 
its parent(s)) 

P (x1, x2, ..., xn) = p(x1)p(x2|x1) · · · p(xn|xn�1, ..., x2, x1).

xAi

X

Y
Z

U

W

p(xi|xi�1, ..., x1) = p(xi|xAi)



Directed Graphical Models

• Variables: U,W,X,Y, and Z

• Example: how to factorize the joint probability distribution 
according to this graph?

 

• Question: which independence assumptions with given 
structure by G?

X

Y
Z

U

W

P (U,W,X, Y, Z) = p(X)p(Y )p(Z|X,Y )p(U)p(W |Z,U)



Conditional Independence

• Assume three variables: A, B, and C
• Three scenarios: 1) cascade
                               2) common parent
                               3) V-structure 
• More general graphs: d-separation with active paths

X

Y

Z

X

Y Z

X Y

Z

Z?X|Y
Y?Z|X
X 6? Y |Z



Undirected Graphical Models

• Some distribution cannot be perfectly represented by 
Bayesian network.

• Represented by undirected graph and also called Markov 
Random Fields (MRF).

• Variables: U,W,X,Y, and V

• We define a factor (or potential)                rather than              .

X

Y
V

U

W

�(X,V ) p(V |X)



Undirected Graphical Models

• We define a factor over cliques (i.e., fully connected subgraphs)

• A probability is a form of: 

• Normalized probability: 

        where 

X

Y
V

U

W

p̃(X,Y, V, U,W ) = �(X,V )�(Y, V )�(V, U,W )

p(X,Y, V, U,W ) =
1

Z
p̃(X,Y, V, U,W )

Z =
X

X,Y,V,U,W

p̃(X,Y, V, U,W )



Undirected Graphical Models

• Formally, a MRF is a probabilistic distribution over 
variables     defined by an undirected graph G in 
which nodes correspond to variables    .

• It has the form

       where  

xi

xi

X

Y
V

U

W

p(x1, ..., xn) =
1

Z

Y

c2C

�c(xc)

Z =
X

x1,...,xn

Y

c2C

�

c

(x
c

)



Relationship between Directed and 
Undirected Graphical Model

• Bayesian networks are a special case of MRFs.
• We can convert directed graph G into its corresponding 

undirected graph G’ by adding edges to all parents of a 
given node, and its process is called moralization.

• MRF is more powerful than Bayesian networks but are 
more difficult to deal with computationally.

• Try to use Bayesian networks first and then switch to MRFs 
if it does not work.
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U

W

X

Y

U

W



Conditional Independence

• What independencies are modeled by an undirected graphical 
model?

• Variables x,y are dependent if they are connected by a path of 
unobserved variables.

• Markov blanket U of a variable X is the minimal set of nodes such 
that X is independent from the rest of the graph if U is observed.
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V
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Inference in Graphical Models



Inference in Graphical Models
• Marginal inference: what is the probability of a given variables 

after sum everything else out (e.g., probability of spam vs non-
spam)?

• MAP (Maximum A Posteriori) inference: what is the most likely 
assignment to the variables, possibly conditioned on evidence 
(e.g.,predicting characters from handwriting).

• Inference is a challenging task, depending on the structure of the 
graph, and in many case, NP-hard.

• If tractable, we use exact inference algorithms and otherwise, we 
use approximate inference algorithms.

p(y = 1) =
X

x1

X

x2

· · ·
X

xn

p(y = 1, x1, x2, ..., xn

)

max

x1,...,xn

p(y = 1, x1, ..., xn

)



Inference Methods

• Exact inferences
➡ Variable elimination, message passing, junction tree, and 

graph cuts*

• Approximate inferences
➡ Loopy belief propagation, linear programing relaxation, 

sampling methods, and variational methods



Variable Elimination
• We use the structure of graph and dynamic programming for efficient inference.

• For simplicity, suppose we have a chain Bayesian network. 

• We are interested in computing marginal distribution

 

• Naive approach would take               .

• Observe that 
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Variable Elimination

• We can start by computing factor  
     and it takes          . Then we have

• Then we repeat to compute factor
  until we are only left with       .

• In total, it takes               instead of           . 

• Variable elimination algorithm mainly performs two operations: 
product and marginalization.

• Similarly, this can be applied to MRFs.  
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Variable Elimination

• Let

• The factor product operation: 

       e.g., 

• The marginalization operation:

• We can also introduce evidence 

• It is NP-hard to find the best ordering, while there are some 
heuristic approaches.

p(x1, ..., xn) =
Y
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.



Belief Propagation

• Now we assume undirected graphical models. We can covert directed 
graphical models to undirected ones by moralization.

• In variable elimination, we need to recompute for a new query. Why not 
storing factors?

• First we assume a tree structure for the graph.

• Suppose that we choose      . We make it as root and pass all 
information (factors) to the root node to compute marginal probabilities.

• We store all passed messages (factors) and then we can answer 
queries in          .

xk

O(1)



Message Passing

• Each step, we compute the factor
where      is the parent of      in the tree.

• Then,      will be eliminated, and           will be passed up 
the tree to the parent      of       in order to be multiplied by 

• We can think of           as a message that      sends to    .

• A node      sends a message to a neighbor      whenever it 
has received messages from all nodes besides     .
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Sum-product Message Passing

• When a node     is ready to transmit to      , send the 
message

• After computing all messages, we have
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Max-product Message Passing

• MAP inference

• By replacing sum with maxes, we can decompose MAP inference 
problem in the same way as marginal inference problem.

• Suppose we compute the partition function of a chain MRF:

• Then we have:
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Junction Tree Algorithm

• So far, we have focused on a tree. What if this is not the 
case? 

• Inference is no longer tractable. 

• Junction tree algorithm tries to partition the graph into clusters 
of variables and convert to a tree of clusters, and then run 
message passing on this graph.

• If we can locally solve for each cluster, we can do exact 
inference.
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Loopy Belief Propagation 

• In many case, finding a good junction tree is difficult.

• We may satisfy with a quick approximate solution instead.

• The main idea of loopy belief propagation is disregarding 
loops in the graph and performing message passing anyway.

• At each time t, we perform update:

• We keep updating for a fixed number of steps or until 
convergence.

• This heuristic approach often works well in practice.
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MAP Inference

• MAP inference: e.g., handwriting recognition, image segmentation

• We can ignore           and thus it becomes:

• Generally, MAP inference is easier than marginal distribution.

• For some cases we can solve MAP inference in polynomial time, while 
general inference is NP-hard.
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Graph Cuts

• Efficient exact MAP inference (for certain conditions)

• Use image segmentation as a motivating example.

• Suppose a MRF with binary potentials (or edge 
energies) of the form:

• We look for an assignment to minimize the energy.

• We can solve this as min-cut problem in an 
augmented graph G’.

• The cost of a min-cut equals the minimum energy in 
the model.

�(xi, xj) = 0 if xi = xj

� if xi 6= xj

(from Stefano Ermon’s class materials)



Linear Programming
• Graph cuts are only applicable in certain restricted classes of MRFs.

• Linear programming

              where 

• We can reduce MAP objective to Integer Linear Programming (ILP) by 
introducing indicator variables for each node and state, and each edge and 
pair of states

• Then objective becomes:

• We also add consistency constraints: each indicator variables should be 
binary and some of them with states should be 1.

• ILP is still NP-hard (and approximate inference), but we can solve it with LP-
relaxation (and round them to recover binary values). In practice it works well.
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Other MAP Inference Approaches

• Local search

• Branch and bound

• Simulated annealing



Sampling Methods

• In practice, many interesting classes of models do not 
have exact polynomial-time solutions. 

• We can use sampling methods to approximate 
expectations of functions:

• We draw samples                  according to p and 
approximate a target expectation with:

and this is called Monte Carlo approximation.

• Special cases: rejection sampling, importance sampling
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Markov Chain Monte Carlo 

• Markov chain is a sequence of random variables 

• Let T denote a matrix with 

• After t steps with initial vector probability      , 

• If                         exists, we call it a stationary distribution of the 
Markov chain.

• We use Markov chain over assignments to a probability function p; 
by running the chain, we will thus sample from p.

• We may use generated samples to compute marginal probabilities. 
Also we may take samples with the highest probabilities and use it 
as an estimate of the mode (i.e., MAP inference).

S0, S1, ... with Si 2 {1, 2, ..., d}, Si ⇠ P (Si|Si�1)

Tij = P (St = i|St�1 = j).

p0 pt = T tp0

⇡ = lim
t!1

pt



Metropolis-Hastings Algorithm

• To construct Markov chain within MCMC, we can use 
Metropolis-Hastings (MH) algorithm.

• Given (unnormalized) target distribution          and proposal 
distribution 

• At each step of the Markov chain, we choose a new point x’ 
according to q. Then we accept this proposed change with 
probability 

• q can be chosen as something simple, like uniform or Gaussian 

• Given any q, MH algorithm will ensure that    will be a stationary 
distribution of the resulting Markov chain.

p̃(x)
q(x0|x)

p̃

min(1,
p̃(x0)q(xt�1|x0)

p̃(xt�1)q(x0|xt�1)
)



Gibbs Sampling

• A widely-used special case of the Metropolis-
Hastings methods is Gibbs sampling.

• Given                and starting configuration                       
at each time step t,  

• It can be considered as                                             
and always accepting the proposal.

• MCMC might requires long time to converge.
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Variational Inference

• Main idea is casting inference as an optimization problem.

• Suppose we are given an intractable probability distribution p. 
Variational techniques try to solve an optimization problem over 
a class of tractable distributions      in order to find a            that 
is most similar to p.

• We then query q (rather than p) in order to get an approximate 
solution.

• Variational approaches will almost never find the globally optimal 
solution. But we will always know if they have converged and, 
even in some cases, we have bounds on their accuracy.

• Also variational inference methods often scale better.

q 2 QQ



Kullback-Leibler (KL) Divergence

• We need to choose approximating family Q and objective 
J(q); latter needs similarity between q and p and we use 
Kullback-Leibler (KL) divergence:

KL(q||p) =
X

x

q(x) log

q(x)

p(x)

KL(q||p) � 0 for all q, p

KL(q||p) = 0 if and only if q = p

KL(q||p) 6= KL(p||q)



The Variational Lower Bound

• Let 

• Optimizing                 directly is not possible due to normalization 
constant          .

• Instead, we use this objective:

• Note that

• Then,

•            is called the variational lower bound or the evidence lower 
bound (ELBO).
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Mean-field Inference

• How do we choose approximating family Q?

e.g., exponential families, neural networks, …

• We consider the set of fully-factored: 

• Then we solve 

   by coordinate descent over 

q(x) = q1(x1)q2(x2) · · · qn(xn)

min
q1,··· ,qn

J(q)

qj



Next Lecture

• Learning in Structured Prediction.


