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Style of Course

- Graduate level course
- Give students an overview of topics
Dig deep into one topic for final project

+ Assume students are mathematically mature
= (Goal is to understand basic concepts

= Understand specific mathematical details depending on
your interest



Grading Breakdown

- Participation (20%)
- Mini-quizzes (10%)
- Final Project (70%)



Paper Reading & Discussion

Paper Reading Course
= Reading assignments for each lecture

= |_ectures more like discussion

- Student presentations
= Presentation schedule signup soon

= Present in groups
= Can choose which paper(s) to present



Mini-quizzes

- Evening after every lecture
= Very short
= Easy if you read material & attended lecture

- Released via Piazza
= Also use Piazza for Q&A



Final Project

-+ Can be on any topic related to the course
- Work In groups
- Will release timeline of progress reports soon



Topics

- Graphical Models

- Inference Methods

- Message Passing, Integer Programs, Dynamic Programming, Variational
Methods

+ Classical Discriminative Learning
- Structured SVM, Structured Perceptron, Conditional Random Fields

- Non-Linear Approaches
+ Structured Random Forests, Deep Structured Prediction

- More Complex Structures
- Hierarchical Classification, Sequence Prediction/Generation

- Applications: Computer Vision, Speech Recognition, NLP, etc.



Focus of Course

- Rigorous algorithm design
= Math intensive, but nothing too hard
= Will walk through relevant math in class

- Apply to interesting applications
= What are the right ways to model a problem?



What Does Rigorous Mean?

- Formal model
= EXxplicitly state your assumptions

- Rigorously reason about how your algorithm solves the model
= Sometimes with provable guarantees

- Argue that your model is a reasonable one



What Makes a Good Final Project?

- Pure Theory

= Study proof technigues, try to extend proof, or apply to new
setting

- Algorithms
= Extend algorithms, design new ones, for new settings

+ Modeling
= Model new setting, what are the right assumptions?



Outline

- First two lectures
= Review basic methods

- Topics/readings chosen by students
= With curating from instructors & TAs
= List of papers will be on website

- But Is negotiable



Introduction to Structured Prediction



Basic Formulation

- "Normal" Machine Learning: f : X — R
= |nputs X can be any kinds of objects

= Qutput y is a real number

- classification, regression, ...

+ Structured Output Learning: [ : X — Y
= |nputs X can be any kinds of objects

= Qutputsy € Y are complex (structured) objects

- Images, text, audio, folds of a protein, ...



Example: Image Segmentation

En:"-ﬂwm'r Safe Tray

Li et al, 2010



Example: Part-of-Speech Tagging

[Example taken

from Michael Collins]

INPUT

Profits soared at Boeing Co., easily topping
forecasts on Wall Street, as their CEO Alan
Mulally announced first quarter results.

OUTPUT

Profits/N soared/V at/P Boeing/N Co./N ,/,
easily/ADV topping/V forecasts/N on/P
Wall/N Street/N ,/, as/P their/POSS EEO/N
Alan/N Mulally/N announced/V first/ADJ
quarter/N results/N ./.

T
l
Y

= (N,V,P,N,N....)

noun
verb Challenge:

25@?5“0” Predict a tag sequence
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Example: Image Caption Generation
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<act=puppy, pre=sit, loc=house> <act=boy, pre=sit, loc=street>
<act=dog, pre=sit, loc=bed> <act=boy, pre=sit, loc=soccer>

Top 5 sentences generated using CNNS Top 5 sentences generated using CNNS

a man and woman laying down to the couch a young woman wearing a pink and standing

with a bed. in front of a metal shoe.

a man laying on top of a sofa with his dog. a boy in blue shirt and shorts is holding a

a man laying on the couch with his dog. sword to pick up two children in a batting

a man is laying on the bed of a sofa. position.

a man and dog bed in the back of a sofa. a young boy holding something in a batting
cage.
a boy standing in a gym with a toy gun.
a little boy is holding a basketball, looking at
the ground.

Quattoni et al, 2015



Example: Image Generation From Text

this small bird has a pink  the flower has petals that
breast and crown, and black are bright pinkish purple

primaries and secondaries. with white stigma

Reed et al, 2016



Example: Protein Folding
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http://titan.princeton.edu/research/highlights/?n=11
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Example: Machine Translation

Economic growth has slowed down in recent years

/™

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

7

La croissance économique s' est ralentie ces derniéres années .




Example: Robot Planning




Example: Behavior Modeling

Eyjolfsdottir et al, 2017



Structured Prediction Problems

- Inference/Prediction
= Given input X and learned model, predict output Y

- Learning/Training
= | earn model parameters w from training data



Probabilistic Graphical Models

Recommended textbook: Probabilistic Graphical Models:
Principles and Techniques by Koller and Friedman



Probabilistic Graphical Models

X

®
S H=D

- Variables X, Y, and Z

-+ Encode relationships between variables.

- Graph represents a set of independences and factorizes a
distribution.

- Directed graphical model and undirected graphical model



Conditional Independence

- Recall that two events A and B are independent if
P(ANB) = P(A)P(B), or equivalently,P(A|B) = P(A)

and we denote it as AlLRB

- Two events A and B are conditionally independent given an
event C if

P(ANB|C) = P(A|C)P(B|C), or equivalently, P(A|B,C) = P(A|C)

and we denote it as A1B|C



Directed Graphical Models

X W
7w
- Also called Bayesian Networks.
* Include: Naive Bayes, HMM, ...

- Recall P(x1,x2,...,x,) =p(x1)p(x2]z1) - p(xp|Tn_1,..., T2, x1).
- We have p($i|$z‘—1a---7$1) :P(fﬁi‘fEAq;)

where L A,; are variables of parents.

-+ Formally, a directed graph G=(V,E) with random variables for each
node in V and conditional probability distribution per node: p(node |
its parent(s))



Directed Graphical Models

X W

®@@

- Variables: UW XY, and Z

- Example: how to factorize the joint probability distribution
according to this graph?

P(Uv W, X, Y, Z) — p(X)p(Y)p(Z‘X, Y)p(U)p(W‘Z, U)

- Question: which independence assumptions with given
structure by G?



Conditional Independence
X /@\ ) ()
(Ci RCIRG

- Assume three variables: A, B, and C

- Three scenarios: 1) cascade Z1X|Y
2) common parent YIZ|X
3) V-structure X LY|Z

- More general graphs: d-separation with active paths



Undirected Graphical Models
N
.

- Some distribution cannot be perfectly represented by
Bayesian network.

- Represented by undirected graph and also called Markov
Random Fields (MRF).

- Variables: UW,X,Y, and V

- We define a factor (or potential) (X, V') rather than p(V|X).



Undirected Graphical Models
N
.

- We define a factor over cliques (i.e., fully connected subgraphs)

- A probability is a form of: p(X,Y, V.U W) = ¢(X,V)op(Y,V)p(V,U, W)
1
- Normalized probability: p(X,Y,V,U W) = Eﬁ(X, Y,V,U W)

where 4 = Z ﬁ(Xa Y7 V) U7 W)
X, Y,V.UW



Undirected Graphical Models

- Formally, a MRF is a probabilistic distribution over
variables ¥:defined by an undirected graph G in
which nodes correspond to variables ..

1
+ It has the form (@1 s Tn) = - L[ e(ze)

where 7 = Z H Pc(xc)



Relationship between Directed and
Undirected Graphical Model

w@ _,®\®@@

-+ Bayesian networks are a special case of MRFs.

- We can convert directed graph G into its corresponding
undirected graph G’ by adding edges to all parents of a
given node, and its process is called moralization.

- MRF is more powerful than Bayesian networks but are
more difficult to deal with computationally.

- Try to use Bayesian networks first and then switch to MRFs
if it does not work.



Conditional Independence

@\‘/@

- What independencies are modeled by an undirected graphical
model?

-+ Variables x,y are dependent if they are connected by a path of
unobserved variables.

- Markov blanket U of a variable Xis the minimal set of nhodes such
that X'is independent from the rest of the graph if U is observed.



Inference in Graphical Models



Inference in Graphical Models

- Marginal inference: what is the probability of a given variables
after sum everything else out (e.g., probability of spam vs non-
spam)?

ply=1) :ZZ---Zp(y: l,21,Z2,..., Tp)

r1 T2 Ln

- MAP (Maximum A Posteriori) inference: what is the most likely

assignment to the variables, possibly conditioned on evidence
(e.g.,predicting characters from handwriting).

max p(y=1,x1,...,2,)
L1yeeeslm

- Inference is a challenging task, depending on the structure of the
graph, and in many case, NP-hard.

- |If tractable, we use exact inference algorithms and otherwise, we
use approximate inference algorithms.



Inference Methods

- Exact inferences

= Variable elimination, message passing, junction tree, and
graph cuts’

- Approximate inferences

= | oopy belief propagation, linear programing relaxation,
sampling methods, and variational methods



Variable Elimination

- We use the structure of graph and dynamic programming for efficient inference.
- For simplicity, suppose we have a chain Bak/esian network.
p(xla sy :En) — p(xl) Hp(xz‘xz—l)

- We are interested in computing marginal distribution

Z Z P(X1, ooy Tp—1, Tp)

Ln—1

- Naive approach would take O(dn).

- Observe that

Z Zp L1 Hp sz|$z 1

Ln—1

Zpilfn\l‘n 1 Zpil?n 1|Tn—2) ZP T2|z1)p(T1).

Ln—1 Ln—2



Variable Elimination

- We can start by computing factor 7 ZP ZTo|21)p

and it takes O(d”). Then we have

= > p(@alza Zpafn 1|Zn—2) Zp T3|T2)T

In—1 Ln—2

- Then we repeat to compute factor 7( ZP 3?3\372

until we are only left with n.

- In total, it takes O(nd?) instead of O(d™)

- Variable elimination algorithm mainly performs two operations:
product and marginalization.

- Similarly, this can be applied to MRFs.



Variable Elimination

Lot Pt mn) = [] felzo)

ceC
- The factor product operation: P3(xe) = o1(a (1)) X ¢a(x (2))-
e.g., ¢3(CL, b, C) = @1 (aa b) X ¢2(b7 C)-

- The marginalization operation: T(r) = Z oz, y)
Yy

- We can also introduce evidence P(Y|E=e)= PE=0)

- It is NP-hard to find the best ordering, while there are some
heuristic approaches.



Belief Propagation

SN
R

)

- Now we assume undirected graphical models. We can covert directed
graphical models to undirected ones by moralization.

- In variable elimination, we need to recompute for a new query. Why not
storing factors?

- First we assume a tree structure for the graph.

- Suppose that we choose Tk. We make it as root and pass all
information (factors) to the root node to compute marginal probabilities.

- We store all passed messages (factors) and then we can answer
queries in O(1).



Message Passing

SN
RN

O

- Each step, we compute the factor ™ (@) Z¢ Tk, T5)75(%;)

where 1k is the parent of *J in the tree.

- Then, Lk will be eliminated, and T(Tk) will be passed up
the tree to the parent L1 of Tk in order to be multiplied by

¢(CE’[, xk)

. We can think of T(Z«) as a message that =« sends to .

- Anode Tisends a message to a neighbor ; whenever it
has received messages from all nodes besides ;.



Sum-product Message Passing

- When a node %i is ready to transmit to <j , send the
message

mi—s 33] qu xz xzamj) H ml—)z(wz)

leN(i)\J

- After computing all messages, we have



Max-product Message Passing

- MAP inference max p(y =1,21,...,Tn)

L1yeeeslp

- By replacing sum with maxes, we can decompose MAP inference
problem in the same way as marginal inference problem.

+ Suppose we compute the partition function of a chain MRF:

Z = Z Zgbxz Hgbxz;xz 1
_> >1 ZL’n,QJn 1 Z¢an 1y Typ— 2 Z¢ ;E2’$1

In ITn-—1 Ln—2

- Then we have:

P = max--- H;;?,:X ¢(xz) H ¢($@, :1;7;_1)

L1

= max max ¢(x,, If,;f%) max ¢(Tn_1,Tp_2) - max o(xae, x1)o(x).
Ty Tn—1 Ty —2 L1



Junction Tree Algorithm

- So far, we have focused on a tree. What if this is not the

case?
- Inference is no longer tractable.

- Junction tree algorithm tries to partition the graph into clusters
of variables and convert to a tree of clusters, and then run
message passing on this graph.

- If we can locally solve for each cluster, we can do exact
inference.

ab.criborbosiberbel




Loopy Belief Propagation

- In many case, finding a good junction tree is difficult.
- We may satisfy with a quick approximate solution instead.

- The main idea of loopy belief propagation is disregarding
loops in the graph and performing message passing anyway.

- At each time t, we perform update:

f:lg Z¢wz (i, z5) H my_; ().

[EN(2)\J

- We keep updating for a fixed number of steps or until
convergence.

- This heuristic approach often works well in practice.



MAP Inference

Output
Input

: 0 .*‘ ‘ N .' 5 -: -
CYER ) et ﬁ'ﬁf&m i ki "_>
Inpllt. ”ﬂages Olltpllt: Segmentation lnaSkS

Everingham et al, 2010
MAP inference: e.g., handwriting recognition, image segmentation

max log p(x) = max Z Ge(xe) —log Z
X X
We can ignore 1log Z and thus it becomes:
max logp(x) = = max Z Ge(Te)
Generally, MAP inference is easier than marginal distribution.

For some cases we can solve MAP inference in polynomial time, while
general inference is NP-hard.



Graph Cuts

Efficient exact MAP inference (for certain conditions)

Use image segmentation as a motivating example.

- Suppose a MRF with binary potentials (or edge

energies) of the form:
¢(.CEZ',ZIL‘]') =0 it L4 — Ly

- We look for an assignment to minimize the energy.

- We can solve this as min-cut problem in an
augmented graph G’.

(from Stefano Ermon’s class materials)

- The cost of a min-cut equals the minimum energy in
the model.



Linear Programming

- Graph cuts are only applicable in certain restricted classes of MRFs.

. Linear programming minc-x
s.t Ax <b
where r€R" c,beR"” and A € R™"*"

- We can reduce MAP objective to Integer Linear Programming (ILP) by

iIntroducing indicator variables for each node and state, and each edge and
pair of states

- Then objective becomes:
mBXS:S:Qi(xi)Mi(wi) + Y > O, xy) (s, )
eV x; 1,)€E x5,

- We also add consistency constraints: each indicator variables should be
binary and some of them with states should be 1.

- |ILP is still NP-hard (and approximate inference), but we can solve it with LP-
relaxation (and round them to recover binary values). In practice it works well.



Other MAP Inference Approaches

- Local search

- Branch and bound

- Simulated annealing



Sampling Methods

- In practice, many interesting classes of models do not
have exact polynomial-time solutions.

- We can use sampling methods to approximate
expectations of functions: E.,[f(z)] = Z F(2)p(x)

- We draw Samples 371 ZET aCCOrdIng to p and
approximate a target expectatlon with: E,..,[f Z f(zh)

and this is called Monte Carlo approximation.

-+ Special cases: rejection sampling, importance sampling



Markov Chain Monte Carlo

- Markov chain is a sequence of random variables

So, 51, ... with §; € {1, 2, ..., d}, S; ~ P(SZ‘SZ_l)
. Let Tdenote a matrix with T3 = P(S¢ = t|Si—1 = j).

- After t steps with initial vector probability PO, Pt = Ttpo

- If m= lim p; exists, we call it a stationary distribution of the
1— 00
Markov chain.

- We use Markov chain over assignments to a probability function p;
by running the chain, we will thus sample from p.

- We may use generated samples to compute marginal probabilities.
Also we may take samples with the highest probabilities and use it
as an estimate of the mode (i.e., MAP inference).



Metropolis-Hastings Algorithm

+ To construct Markov chain within MCMC, we can use
Metropolis-Hastings (MH) algorithm.

- Given (unnormalized) target distribution p(x) and proposal
distribution ¢(z’|x)

- At each step of the Markov chain, we choose a new point X’
according to g. Then we acg:elpt this proposed change with
probability iy, L@@ 1)

Pt g(a |zt —1)
+ g can be chosen as something simple, like uniform or Gaussian

- Given any g, MH algorithm will ensure that Pwill be a stationary
distribution of the resulting Markov chain.



Gibbs Sampling

-+ A widely-used special case of the Metropolis-
Hastings methods is Gibbs sampling.

- Given 71, ---, Tn, and starting configuration z° = (29, ...

at each time step t,

Sample ) ~ p(x;|z?,) for 1 <i<n

Set ' = (2),...,2},2)).
- It can be considered as q(x;, x_;|x;, x_;) = p(a;|z_;)
and always accepting the proposal.

- MCMC might requires long time to converge.



Variational Inference

- Main idea is casting inference as an optimization problem.

+ Suppose we are given an intractable probability distribution p.
Variational techniques try to solve an optimization problem over
a class of tractable distributions () in order to find ag € () that
IS most similar to p.

- We then query g (rather than p) in order to get an approximate
solution.

- Variational approaches will almost never find the globally optimal
solution. But we will always know if they have converged and,
even in some cases, we have bounds on their accuracy.

- Also variational inference methods often scale better.



Kullback-Leibler (KL) Divergence

+ We need to choose approximating family Q and objective
J(q); latter needs similarity between g and p and we use
Kullback-Leibler (KL) divergence:

L(q|lp) = E:q ) log g

K L(qllp) > 0 for all ¢, p
K L(q|lp) =0 if and only if ¢ = p
K L(qllp) # KL(pllq)



The Variational Lower Bound

p(x1,...,Tn;0)

. Let p(x1,...,2,;0) = 2(0) = %H¢k($k§9)

- Optimizing K L(q||p) directly is not possible due to normalization
constant Z(0).

q(2)

- Instead, we use this objective: J(a) = Zq p(z)’
qg\xr
. Note that Zq v)log - §

— Zq ) log Z(az) log Z(0)
— KL(q|lp) — log Z(6)
. Then, log Z(0) = KL(q||lp) — J(q) > —J(q)

. —J(q) is called the variational lower bound or the evidence lower
bound (ELBO).



Mean-field Inference

- How do we choose approximating family Q?

e.g., exponential families, neural networks, ...

. We consider the set of fully-factored:q(x) = q1(x1)q2(x2) - - - qn (T )
- Then we solve min J(q)

41, s4n

by coordinate descent over ¢;



Next Lecture

+ Learning in Structured Prediction.



