VARIATIONAL INFERENCE : FOUNDATIONS & APPLICATIONS

Albert Zhao, John Kim CS 159

Overview

Foundations

- Probablistic Pipeline
- Brief History
- Problem with exact inference
- Evidence lower bound
- Simple model example

Applications

- Crowd Clustering
- Variational Autoencoders

Foundations

The Probablistic Pipeline

- Inference is the main algorithmic problem
- What does this model say about this data?
- Goal: Find Scalable and General inference algorithms
- Variational Inference is one solution to approximate tractable inference

Brief History of Variational Inference

- Variational Inference adapted its ideas from statistical physics.
- Concepts first emerged in late 80s with Peterson and Anderson (1987) who used mean-field methods to fit a neural-network
- Hinton and Van Camp (1993) furthered mean-field methods for neural networks.
- Michael Jordan's lab at MIT generalized V.I. to many probablistic models (Jordan et al., 1999)

Recent applications

[Rezende et al. 2014]

[Kucukelbir et al. 2015]

- V. I. has become more scalable and easy to derive (even automated in some cases)
- Variational inference has been extended to probablistic programming, reinforcement learning, and etc.
- □ Today we'll introduce the basic pipeline of V.I.

Problems with exact inference

Suppose we have some posterior distribution that we would like to compute by Bayesian inference:

$$p^{*}(\mathbf{x}) \triangleq p(\mathbf{x} \mid D) = \frac{1}{Z} p(D \mid \mathbf{x}) p(\mathbf{x})$$
Latent variable
Called the "evidence"
Observed Data
Often intractable to compute

We want to approximate the true posterior with some close proxy distribution q

Variational Inference in a picture

- Variational Inference converts the inference problem into an optimization problem
- \Box User defines a family of proxy distributions $q(\mathbf{x}; v)$
- Optimize the variational parameters v to bring q(x) as "close" to $p^*(x)$ as possible

Theory: KL divergence

Measure of distance between distributions

Forward KL divergence

$$\mathbb{KL}(p^*||q) = \sum_{\mathbf{x}} p^*(\mathbf{x}) \log \frac{p^*(\mathbf{x})}{q(\mathbf{x})}$$

Reverse KL divergence

$$\mathbb{KL}(q||p^*) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p^*(\mathbf{x})}$$

*Note that KL(a | | b) divergence is 0 iff a = b

Theory: KL divergence

- \square Minimizing reverse KL pushes q to underestimates the support of p
- Minimizing forward KL pushes q to overestimate the support of p
- Open times we want to accurately estimate a single mode of the true posterior – Minimize reverse KL
- □ Minimizing forward KL is referred to as expectation propagation

Kevin Murphy, "Machine Learning: A Probablistic Perspective", Chp 21, pp. 734

Theory: Modifying reverse KL

Normalized posterior in reverse KL is intractable to compute:

$$\mathbb{KL}(q||p^*) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p^*(\mathbf{x})}$$

The un-normalized posterior is often tractable to compute: $\tilde{p}(\mathbf{x}) \triangleq p(\mathbf{x}, \mathcal{D}) = p^*(\mathbf{x})Z$

□ A modified KL divergence objective is then:

$$J(q) \triangleq \mathbb{KL}\left(q | | \tilde{p}
ight)$$
Computable

Theory: Formulating J(q)

Following the definition of KL divergence:

$$J(q) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{\tilde{p}(\mathbf{x})}$$
$$= \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{Zp^*(\mathbf{x})}$$
$$= \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p^*(\mathbf{x})} - \log Z$$
$$= \mathbb{KL} (q||p^*) - \log Z$$
Constant w.r.t q

Theory: Interpreting J(q)

Since KL divergence is strictly non-negative:

$$J(q) = \underbrace{\mathbb{KL}\left(q||p^*\right) - \log Z \ge -\log Z = -\log p(\mathcal{D})}_{\text{Positive}}$$

- □ A couple observations:
 - Minimizing J(q) is equivalent to minimizing KL(q | | p*)
 - -J(q) lower bounds the log-likelihood of the dataset
 - Hence our objective is to minimize J(q)

Theory: Evidence Lower Bound

Alternatively, we can maximize the additive inverse:

$$L(q) \triangleq -J(q) = -\mathbb{KL}(q||p^*) + \log Z \le \log Z = \log p(\mathcal{D})$$

Variational Lower Bound Evidence Lower Bound (ELBO)

□ We will further discuss how to maximize the ELBO

Theory: Evidence Lower Bound

We may formulate J(q) in various ways:

$$J(q) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{\tilde{p}(\mathbf{x})}$$
$$= \mathbb{E}_q \left[\log q(\mathbf{x}) \right] + \mathbb{E}_q \left[-\log \tilde{p}(\mathbf{x}) \right]$$
$$= -\left[\mathbb{H} \left(q \right) \right] + \left[\mathbb{E}_q \left[E(\mathbf{x}) \right] \right]$$
Entropy Expected energy

 \Box First term wants q to be more diffuse (sort of regularization)

 \square Second term wants q to place its mass on the MAP estimate

ELBO is not convex! (optimizing converges to local optimum)

Theory: Evidence Lower Bound

We may formulate J(q) in various ways:

 $J(q) = \mathbb{E}_{q} \left[\log q(\mathbf{x}) - \log p(\mathbf{x}) p(\mathcal{D}|\mathbf{x}) \right]$ $= \mathbb{E}_{q} \left[\log q(\mathbf{x}) - \log p(\mathbf{x}) - \log p(\mathcal{D}|\mathbf{x}) \right]$ $= \mathbb{E}_{q} \left[-\log p(\mathcal{D}|\mathbf{x}) \right] + \mathbb{KL} \left(q(\mathbf{x}) || p(\mathbf{x}) \right)$ Expected Negative Log-Likelihood Distance between q

and exact prior

□ So how do we maximize the ELBO?

 $L(q) \triangleq -J(q) = -\mathbb{KL}(q||p^*) + \log Z \le \log Z = \log p(\mathcal{D})$

- Let's consider a popular form of variational inference called Mean Field approximation. (Opper and Saad 2001)
- □ Assume the proxy q fully factorizes.

$$q(\mathbf{x}) = \prod_i \frac{q_i(\mathbf{x}_i)}{\text{One proxy distribution per dimension}}$$

Recall the ELBO

$$L(q) \triangleq -J(q) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{\tilde{p}(\mathbf{x})}{q(\mathbf{x})} \le \log p(\mathcal{D})$$

 \Box Let's single out terms involving one factorized q_i

$$\begin{split} L(q_j) &= \sum_{\mathbf{x}} \prod_i q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right] \\ &= \sum_{\mathbf{x}_j} \sum_{\mathbf{x}_{-j}} q_j(\mathbf{x}_j) \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\log \tilde{p}(\mathbf{x}) - \sum_k \log q_k(\mathbf{x}_k) \right] \\ &= \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \log \tilde{p}(\mathbf{x}) \\ &- \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \left[\sum_{k \neq j} \log q_k(\mathbf{x}_k) + q_j(\mathbf{x}_j) \right] \\ &= \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log f_j(\mathbf{x}_j) - \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log q_j(\mathbf{x}_j) + \text{const} \\ &- \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log f_j(\mathbf{x}_j) - \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log q_j(\mathbf{x}_j) + \text{const} \end{split}$$

From the previous result:

$$L(q_j) = \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log f_j(\mathbf{x}_j) - \sum_{\mathbf{x}_j} q_j(\mathbf{x}_j) \log q_j(\mathbf{x}_j) + \text{const}$$

The resulting equation can be simplified as:

$$L(q_j) = -\mathbb{KL}\left(q_j || f_j\right)$$

$$\log f_j(\mathbf{x}_j) \triangleq \sum_{\mathbf{x}_{-j}} \prod_{i \neq j} q_i(\mathbf{x}_i) \log \tilde{p}(\mathbf{x}) = \mathbb{E}_{-q_j} \left[\log \tilde{p}(\mathbf{x}) \right]$$

- \square Recall KL(a | |b) = 0 iff a = b
- \square Hence, we may maximize $L(q_j)$ by setting $q_j = f_j$

$$q_{j}(\mathbf{x}_{j}) = \frac{1}{Z_{j}} \exp\left(\mathbb{E}_{-q_{j}}\left[\log \tilde{p}(\mathbf{x})\right]\right)$$
Normalization constant

Nice exact expression for Coordinate Ascent!

Blueprint algorithm for mean field V. I.

- Derive a probablistic model for problem
- Choose a proxy distribution q
- Derive ELBO
- \Box Coordinate ascent on each q_i (Ghahramani and Beal, 2001)
- Repeat until convergence

Problem: Difficult to handle large datasets since each update of the algorithm requires full iteration through the dataset => Stochastic V. I. (won't get into)

Pros and Cons

Pros

Principled method to trade complexity for bias
 Possible to assess convergence

Cons

Biased estimate of the true posterior

Model-specific algorithms need to be derived by hand

Example: Gaussian Mixture Model

[Images by Alp Kucukelbir]

A Sample Model

- Take a sample hierarchical clustering model that is based on a mixture of K 1D Gaussians with variance 1
- Generating data is a hierarchical process
- \square We first sample K values μ_k from a Gaussian $\mathcal{N}(0,\sigma^2)$
- These values serve as the means of the Gaussians to be mixed

A Sample Model

- □ Then, we sample the "cluster" c_i the data point belongs to from Categorical(1/κ,...,1/κ)
- We treat c_i as a one-hot encoded vector indicating the cluster and define µ to be the vector of all the means
- Use then sample the data point x_i from $\mathcal{N}(c_i^\top \mu, 1)$
- So the process goes like

Means -> Cluster of data point -> Sample from Gaussian with corresponding mean

A Sample Model

- Let x be the vector of sampled data points and c be the matrix containing all c_i
- The joint probability distribution of this model over all variables is

$$p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}) = p(\boldsymbol{\mu}) \prod_{i=1}^{n} p(c_i) p(x_i | c_i, \boldsymbol{\mu})$$

$$\square \text{ Note that } p(x_i | c_i, \boldsymbol{\mu}) \text{ follows } \mathcal{N}(c_i^\top \boldsymbol{\mu}, 1)$$

Inference Difficulties with Sample Model

- We want to infer p(µ, c | x) since µ, c are the latent variables
- $\Box p(\boldsymbol{\mu}, \boldsymbol{c} \mid \boldsymbol{x}) = p(\boldsymbol{\mu}, \boldsymbol{c}, \boldsymbol{x}) / p(\boldsymbol{x})$

□ However,

$$p(\mathbf{x}) = \int p(\boldsymbol{\mu}) \prod_{i=1}^{n} \sum_{c_i} p(c_i) p(x_i | c_i, \boldsymbol{\mu}) d\boldsymbol{\mu}.$$

This integral is K-dimensional and isn't equal to a product of 1-dimensional integrals and hence is intractable (O(Kⁿ) to evaluate numerically)

Inference Difficulties with Sample Model

 \square We could try to rewrite p(x)

Variational Inference with Sample Model

- Variational Inference to the Rescue!
- □ We want to find $q(\mu, c)$ that approximates $p(\mu, c \mid x)$

Let's define the form of q(µ, c)

$$q(\boldsymbol{\mu}, \mathbf{c}) = \prod_{k=1}^{K} q(\mu_k; m_k, s_k^2) \prod_{i=1}^{n} q(c_i; \varphi_i).$$

 $\Box q(\mu_k; m_k, s_k^2)$ is a Gaussian with mean m_k and variance s_k^2

- $\Box q(c_i; \varphi_i)$ assigns probabilities to c_i based on a vector φ_i of probabilities
- q(μ, c) decomposes into a product due to the mean field assumption; the parametric forms of the factors are chosen based on the form of p(μ, c, x)

- \square Hence, the variational parameters are $\phi_{i},\,m_{k},\,$ and $s_{k}^{\ 2}$
- Recall (where x = (µ, c) here) the following two equations

$$q_j(\mathbf{x}_j) = \frac{1}{Z_j} \exp\left(\mathbb{E}_{-q_j}\left[\log \tilde{p}(\mathbf{x})\right]\right)$$
$$p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}) = p(\boldsymbol{\mu}) \prod_{i=1}^n p(c_i) p(x_i | c_i, \boldsymbol{\mu})$$

 \square Hence, for the update for $\phi_{i,}$ we obtain

$$q^*(c_i; \varphi_i) \propto \exp\left\{\log p(c_i) + \mathbb{E}\left[\log p(x_i | c_i, \boldsymbol{\mu}); \mathbf{m}, \mathbf{s}^2\right]\right\}$$

- Expectations are over the factors of q related to the variables after the semicolon unless otherwise indicated
- □ log $p(c_i) = log (1/K) = -log K$, which is a constant
- For the second term in the sum, note that as c_i is an indicator vector, we have that

$$p(x_i | c_i, \mu) = \prod_{k=1}^{K} p(x_i | \mu_k)^{c_{ik}}$$

Recall that p(x_i | c_i, µ) follows 𝒩 (c_i^Tµ, 1)
 Hence,

$$\mathbb{E}\left[\log p(x_i \mid c_i, \boldsymbol{\mu})\right] = \sum_k c_{ik} \mathbb{E}\left[\log p(x_i \mid \boldsymbol{\mu}_k); m_k, s_k^2\right]$$
$$= \sum_k c_{ik} \mathbb{E}\left[-(x_i - \boldsymbol{\mu}_k)^2/2; m_k, s_k^2\right] + \text{const.}$$
$$= \sum_k c_{ik} \left(\mathbb{E}\left[\boldsymbol{\mu}_k; m_k, s_k^2\right] x_i - \mathbb{E}\left[\boldsymbol{\mu}_k^2; m_k, s_k^2\right]/2\right) + \text{const.}$$

- \square As c_i is an indicator vector, we obtain for the update for $\phi_{ik,}$
- $$\begin{split} \varphi_{ik} \propto \exp\left\{\mathbb{E}\left[\mu_k; m_k, s_k^2\right] x_i \mathbb{E}\left[\mu_k^2; m_k, s_k^2\right]/2\right\} \\ & \Box \text{ The expected values here are easy to calculate given the form of } q(\mu_k; m_k, s_k^2), \text{ which is a Gaussian} \end{split}$$

□ Recall (where
$$\mathbf{x} = (\boldsymbol{\mu}, \boldsymbol{c})$$
 here)
 $q_j(\mathbf{x}_j) = \frac{1}{Z_j} \exp\left(\mathbb{E}_{-q_j}\left[\log \tilde{p}(\mathbf{x})\right]\right)$

Also, recall

$$p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}) = p(\boldsymbol{\mu}) \prod_{i=1}^{n} p(c_i) p(x_i | c_i, \boldsymbol{\mu})$$

 \Box Hence, for the update for m_k and s_k , we get

 $q(\mu_k) \propto \exp\left\{\log p(\mu_k) + \sum_{i=1}^n \mathbb{E}\left[\log p(x_i | c_i, \boldsymbol{\mu}); \varphi_i, \mathbf{m}_{-k}, \mathbf{s}_{-k}^2\right]\right\}$
Variational Updates For Sample Model

 \square We then recall that μ_k is drawn from $\mathcal{N}(0,\sigma^2)$ and for the second equality, that $p(x_i | c_i, \mu) = \prod_{k=1}^{\kappa} p(x_i | \mu_k)^{c_{ik}}$ $\log q(\mu_k) = \log p(\mu_k) + \sum_i \mathbb{E} \left[\log p(x_i | c_i, \boldsymbol{\mu}); \varphi_i, \mathbf{m}_{-k}, \mathbf{s}_{-k}^2 \right] + \text{const.}$ $= \log p(\mu_k) + \sum_i \mathbb{E} \left[c_{ik} \log p(x_i | \mu_k); \varphi_i \right] + \text{const.}$ $= -\mu_k^2/2\sigma^2 + \sum_i \mathbb{E}\left[c_{ik}; \varphi_i\right] \log p(x_i \mid \mu_k) + \text{const.}$ $= -\mu_k^2/2\sigma^2 + \sum_i \varphi_{ik} \left(-(x_i - \mu_k)^2/2 \right) + \text{const.}$ $=-\mu_k^2/2\sigma^2+\sum_i\varphi_{ik}x_i\mu_k-\varphi_{ik}\mu_k^2/2+\text{const.}$ $= \left(\sum_{i} \varphi_{ik} x_{i}\right) \mu_{k} - \left(\frac{1}{2\sigma^{2}} + \sum_{i} \varphi_{ik}/2\right) \mu_{k}^{2} + \text{const.}$

Variational Updates For Sample Model

We then note that q(µ_k) is a Gaussian distribution and update m_k and s_k² according to the mean and standard deviation of the Gaussian

$$m_k = \frac{\sum_i \varphi_{ik} x_i}{1/\sigma^2 + \sum_i \varphi_{ik}}, \qquad s_k^2 = \frac{1}{1/\sigma^2 + \sum_i \varphi_{ik}}$$

Deriving ELBO for Simple Model

Recall this equation for the ELBO:

$$L(q) \triangleq -J(q) = \sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{\tilde{p}(\mathbf{x})}{q(\mathbf{x})}$$

The ELBO can be rewritten as follows, where expectations are taken over q(z) (here, z represents the latent variables instead of x and p(z, x) = p̃(x)
ELBO(q) = E [log p(z, x)] - E [log q(z)]

Deriving ELBO for Simple Model

Recall
$$p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}) = p(\boldsymbol{\mu}) \prod_{i=1}^{n} p(c_i) p(\boldsymbol{x}_i | c_i, \boldsymbol{\mu})$$

And $q(\boldsymbol{\mu}, \mathbf{c}) = \prod_{k=1}^{K} q(\mu_k; m_k, s_k^2) \prod_{i=1}^{n} q(c_i; \varphi_i)$

Deriving ELBO for Simple Model

We then obtain (note that p and q factorize)

$$\begin{aligned} \text{ELBO}(\mathbf{m}, \mathbf{s}^{2}, \boldsymbol{\varphi}) &= \sum_{k=1}^{K} \mathbb{E} \left[\log p(\mu_{k}); m_{k}, s_{k}^{2} \right] \\ &+ \sum_{i=1}^{n} \left(\mathbb{E} \left[\log p(c_{i}); \boldsymbol{\varphi}_{i} \right] + \mathbb{E} \left[\log p(x_{i} | c_{i}, \boldsymbol{\mu}); \boldsymbol{\varphi}_{i}, \mathbf{m}, \mathbf{s}^{2} \right] \right) \\ &- \sum_{i=1}^{n} \mathbb{E} \left[\log q(c_{i}; \boldsymbol{\varphi}_{i}) \right] - \sum_{k=1}^{K} \mathbb{E} \left[\log q(\mu_{k}; m_{k}, s_{k}^{2}) \right]. \end{aligned}$$

Each of these expectations can be calculated in closed form

Applications

Crowd sourcing has been used to label large datasets of data

□ Conventionally:

- Experts provide the categories
- Crowd labels images with predefined categories

- Can workers **discover** categories?
- We want to use the crowd to cluster images in an unsupervised manner.

- But how do we aggregate data from multiple workers?
- We extract binary pairwise labels from the worker provided clusterings.

(image id 1, image id 2, same cluster?) = (a_i, b_i, l)

- Then, we want to find some embedding of images that aggregates the information provided by the workers.
- □ To do so, we first define a graphical model.

Blueprint algorithm for mean field V. I.

- Derive a probablistic model for problem
- \Box Choose a proxy distribution q
- Derive ELBO
- \Box Coordinate ascent on each q_i (Ghahramani and Beal, 2001)
- Repeat until convergence

Blueprint algorithm for mean field V. I.

- Derive a probablistic model for problem
- □ Choose a proxy distribution q
- Derive ELBO
- \Box Coordinate ascent on each q_i (Ghahramani and Beal, 2001)
- Repeat until convergence

- Clusters are sampled from a Dirichlet process
- Each cluster has a corresponding mean and variance which describe a Multivariate Gaussian from which the images are sampled

- How do we define the likelihood of the data?
- Workers act as a logistic classifier in the embedding space

$$p(l_t | \mathbf{x}_{a_t}, \mathbf{x}_{b_t}, \mathbf{W}_{j_t}, \tau_{j_t}) = \frac{1}{1 + \exp(-l_t A_t)}$$

The strength of the similarity is defined as

$$A_t = \mathbf{x}_{a_t}^T \mathbf{W}_{j_t} \mathbf{x}_{b_t} + \tau_{j_t}$$

High A_t: Images will be labeled as the same cluster
Low A_t: Images will be labeled to be in different cluster

Then, the joint distribution is defined as

$$p(\Phi, V, Z, X, W, \tau, \mathcal{L}) = \prod_{k=1}^{\infty} p(V_k | \alpha) p(\Phi_k | \mathbf{m}_0, \beta_0, \mathbf{J}_0, \eta_0) \prod_{i=1}^{N} p(z_i | V) p(\mathbf{x}_i | \Phi_{z_i})$$
$$\prod_{j=1}^{J} p(\operatorname{vecp}\{\mathbf{W}_j\} | \sigma_0^w) p(\tau_j | \sigma_0^\tau) \prod_{t=1}^{T} p(l_t | \mathbf{x}_{a_t}, \mathbf{x}_{b_t}, \mathbf{W}_{j_t}, \tau_{j_t}).$$

Exact inference of the posterior is clearly intractable since we need to integrate over variables with complex dependencies. (Encoded in each of the factorized distributions)

Blueprint algorithm for mean field V. I.

- Derive a probablistic model for problem
- \Box Choose a proxy distribution q
- Derive ELBO
- \Box Coordinate ascent on each q_i (Ghahramani and Beal, 2001)
- Repeat until convergence

- We instead use Variational Inference.
- Define a factorized proxy posterior which doesn't model the full complexity between the variables. Instead it represents a single mode of the true posterior.

$$q(\Phi, V, Z, X, W, \tau) = \prod_{k=K+1}^{\infty} p(V_k | \alpha) p(\Phi_k | \mathbf{m}_0, \beta_0, \mathbf{J}_0, \eta_0)$$
$$\prod_{k=1}^{K} q(V_k) q(\Phi_k) \prod_{i=1}^{N} q(z_i) q(\mathbf{x}_i) \prod_{j=1}^{J} q(\operatorname{vecp}\{\mathbf{W}_j\}) q(\tau_j)$$

Blueprint algorithm for mean field V. I.

- Derive a probablistic model for problem
- \Box Choose a proxy distribution q
- Derive ELBO
- \Box Coordinate ascent on each q_i (Ghahramani and Beal, 2001)
- Repeat until convergence

- We define variational distributions for the first K mixture components and fix the remainder to their corresponding priors.
- Then we can define a lower bound to the log evidence

 $\log p(\mathcal{L}|\sigma_0^x, \sigma_0^\tau, \sigma_0^w, \alpha, \mathbf{m}_0, \beta_0, \mathbf{J}_0, \eta_0) \\\geq E_q \log p(\Phi, V, Z, X, W, \tau, \mathcal{L}) + \mathcal{H}\{q(\Phi, V, Z, X, W, \tau)\}$

Blueprint algorithm for mean field V. I.

- Derive a probablistic model for problem
- □ Choose a proxy distribution q
- Derive ELBO
- \Box Coordinate ascent on each q_i (Ghahramani and Beal, 2001)
- Repeat until convergence

$$\begin{aligned} q_{ik} &= q(z_i = k) \sim \exp\left(\psi(\xi_{k,1}) - \psi(\xi_{k,1} + \xi_{k,2}) + \sum_{l=1}^{k-1} \psi(\xi_{l,2}) - \psi(\sum_{l=1}^{k-1} \xi_{l,1} + \xi_{l,2}) \right. \\ &\quad \left. - \frac{\eta_k}{2} tr\{\mathbf{J}_k^{-1} E_q\{\mathbf{x}_i \mathbf{x}_i^T\}\} - \frac{1}{2} (D \log(\pi) - \log |\mathbf{J}_k| + \sum_{d=1}^{D} \psi(1 + \eta_k - \frac{d}{2}) - \frac{D}{\beta_k} \right) \\ &\left[\boldsymbol{\sigma}_i^x \right]_d = \left(\sum_k q(z_i = k) \eta_k [\mathbf{J}_k]_{dd} + \sum_{l:a_t = i} 2|\lambda(\Delta_l)| [E_q\{\mathbf{W}_{j_t} \mathbf{x}_{b_t} \mathbf{x}_{b_t}^T \mathbf{W}_{j_t}] \right]_{dd} \\ &\quad + \sum_{l:b_t = i} 2|\lambda(\Delta_l)| [E_q\{\mathbf{W}_{j_t} \mathbf{x}_{a_t} \mathbf{x}_{a_t}^T \mathbf{W}_{j_t}]]_{dd} \right)^{-1} \\ & \boldsymbol{\mu}_i^x = (\mathbf{I} - \mathbf{U}_i \circ (\mathbf{1} - \mathbf{I}))^{-1} \mathbf{v}_i \\ &\quad \boldsymbol{\sigma}_j^\tau = \left(1/\sigma_0^\tau + \sum_{l:j_t = j} 2|\lambda(\Delta_l)| \right)^{-1} \\ &\left. \mu_j^\tau = \sigma_j^\tau \sum_{l:j_t = j} l_t/2 + 2\lambda(\Delta_l) (\boldsymbol{\mu}_{a_t}^x)^T \boldsymbol{\mu}_j^w \boldsymbol{\mu}_{b_t}^x \\ &\left[\boldsymbol{\sigma}_j^w]_{d_1d_2} = \left(1/\sigma_0^w + \sum_{l:j_t = j} 2|\lambda(\Delta_l)| [E_q\{\mathbf{Y}^{a_tb_t}\}]_{d_1d_2d_1d_2} \right)^{-1} \\ &\quad \text{vecp}\{\boldsymbol{\mu}_j^w\} = (\mathbf{I} - \mathbf{B}_j \circ (\mathbf{1} - \mathbf{I}))^{-1} \mathbf{c}_j \\ &\quad \Delta_t = (E_q\{A_t^2\})^{1/2} \end{array} \end{aligned}$$

where $N_k = \sum_i q_{ki}$ and $\bar{\mathbf{x}}_k = \frac{1}{N_k} \sum_i q_{ik} \mathbf{x}_i$.

Inferred Cluster

- An autoencoder uses neural networks to represent its input x in terms of latent variables z and then uses this representation to generate output data x' similar to the input
- So we encode the input x using f, z = f(x), and then decode z by some function g, x' = g(z), where both f and g depend on model parameters

For variational autoencoders, we use neural networks to model probability distributions p_θ(x | z) and p_θ(z | x) instead of deterministic functions x' = g(z) and z = f(x), where θ represents model parameters

- We assume that the input data x is generated by first sampling z from a prior distribution p_θ(z) and then sampling x from the distribution p_θ(x | z)
- x can be discrete or continuous, but z is assumed to be continuous
- Note: Discrete versions of variational autoencoders exist where z is discrete; see Rolfe 2017.

- We would like to model p_θ(x | z) and infer p_θ(z | x) given a large dataset and that the marginal likelihood p_θ(x) is intractable
- Calculating the expectations for the mean field update equations may be intractable, so we don't use mean field inference
- □ Again, since p_θ(x) and hence p_θ(z | x) is intractable, we introduce a variational family q_Φ(z | x) as an approximation

Recall that the ELBO can be written in terms of the KL divergence

 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)}) || p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}) \right]$

- Optimizing the ELBO can be challenging without the mean field assumption since the gradient of the ELBO may not have a closed form
- We could use the Monte Carlo gradient estimator (below), but it has high variance

 $\nabla_{\boldsymbol{\phi}} \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \right] = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z})} \left[f(\mathbf{z}) \nabla_{q_{\boldsymbol{\phi}}(\mathbf{z})} \log q_{\boldsymbol{\phi}}(\mathbf{z}) \right] \simeq \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}) \nabla_{q_{\boldsymbol{\phi}}(\mathbf{z}^{(l)})} \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(l)})$

Reparametrization Trick

Notably, we can often rewrite a sample ž from q_Φ(z | x) using a deterministic differentiable function of a noise variable ε that is drawn from a probability distribution p

$$\widetilde{\mathbf{z}} = g_{\phi}(\boldsymbol{\epsilon}, \mathbf{x}) |$$
 with $\boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon})$

For this technique to work, z must be continuous (otherwise, g wouldn't be differentiable)

Example of Reparametrization Trick

$$\Box$$
 Let $z \sim p(z|x) = \mathcal{N}(\mu, \sigma^2)$

 \square We could also rewrite z as $z=\mu+\sigma\epsilon$ $\epsilon\sim\mathcal{N}(0,1)$

We can now write Monte Carlo estimators of expectations of f(z) as follows

 $\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)})}\left[f(\mathbf{z})\right] = \mathbb{E}_{p(\boldsymbol{\epsilon})}\left[f(g_{\phi}(\boldsymbol{\epsilon}, \mathbf{x}^{(i)}))\right] \simeq \frac{1}{L} \sum_{l=1}^{L} f(g_{\phi}(\boldsymbol{\epsilon}^{(l)}, \mathbf{x}^{(i)})) \quad \text{where} \quad \boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon})$

Applying this technique to the ELBO for the variational autoencoder, we obtain

$$\begin{aligned} \widetilde{\mathcal{L}}^{A}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(i,l)} | \mathbf{x}^{(i)}) \\ \text{where} \quad \mathbf{z}^{(i,l)} &= g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}^{(i,l)}, \mathbf{x}^{(i)}) \quad \text{and} \quad \boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon}) \end{aligned}$$

If the K-L divergence can be evaluated analytically, then we need only Monte Carlo estimate the second term (this expression generally has less variance):

$$\begin{aligned} \widetilde{\mathcal{L}}^{B}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)}) | | p_{\boldsymbol{\theta}}(\mathbf{z})) + \frac{1}{L} \sum_{l=1}^{L} (\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}^{(i,l)})) \\ \text{where} \quad \mathbf{z}^{(i,l)} &= g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}^{(i,l)}, \mathbf{x}^{(i)}) \quad \text{and} \quad \boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon}) \end{aligned}$$

Note that KL divergence from the prior acts as a regularizer and the second term is negative reconstruction error

- We can take the gradient of either one of the ELBO estimators and use it in a gradient-based optimizer such as stochastic gradient ascent
- We can also use minibatches with the ELBO estimator using the equation below

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{X}) \simeq \widetilde{\mathcal{L}}^{M}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{X}^{M}) = \frac{N}{M} \sum_{i=1}^{M} \widetilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)})$$

Setup for Variational Autoencoder

- \square p_{θ}(**z**) is set to N(**z**; **0**, **I**), the multivariate Gaussian with mean **0** and covariance the identity matrix
- □ p_θ(x | z) is set to a multivariate Gaussian for continuous x or Bernoulli for binary x
- q₀(z | x) is set to a multivariate Gaussian with diagonal covariance matrix
- $\Box \text{ l.e. } \log q_{\phi}(\mathbf{z}|\mathbf{x}^{(i)}) = \log \mathcal{N}(\mathbf{z};\boldsymbol{\mu}^{(i)},\boldsymbol{\sigma}^{2(i)}\mathbf{I})$
- Θ and Φ are parameters set by neural networks with one hidden layer

Setup for Variational Autoencoder

- We use the reparametrization trick for the Gaussian distribution similar to the example given before
- The ELBO Monte Carlo estimator for this model is

$$\begin{aligned} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &\simeq \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log((\sigma_{j}^{(i)})^{2}) - (\mu_{j}^{(i)})^{2} - (\sigma_{j}^{(i)})^{2} \right) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}^{(i,l)}) \\ \text{where} \quad \mathbf{z}^{(i,l)} &= \boldsymbol{\mu}^{(i)} + \boldsymbol{\sigma}^{(i)} \odot \boldsymbol{\epsilon}^{(l)} \quad \text{and} \quad \boldsymbol{\epsilon}^{(l)} \sim \mathcal{N}(0, \mathbf{I}) \end{aligned}$$

Here, J represents the dimensionality of z, represents element-wise product

Generating handwritten digits (learned data manifold for 2D latent space below from Kingma &

Welling 2014) A. B з
Applications of Variational Autoencoder

Examples of handwritten digits generated by variational autoencoder using 20 dimensional latent space (also from Kingma & Welling 2014)

Applications of Variational Autoencoder

 Comparison of Variational Autoencoder (labeled as AEVB) compared to other methods (from Kingma & Welling 2014)

Applications of Variational Autoencoder

Learning representations of images (from Kulkarni et al., 2015)

	I	316	3.6	I	Т	Т	Т	T	Э
(a)	k	3	k	k	k	e k	k	a k	X
	P	۲	M	F	F			K	K
	R	36	R	Ţ	1	Ħ	Ħ	M	M.
	F	A	A	I	F	F	F	P	F
(b)		H	H	F		E		T	F