VARIATIONAL INFERENCE :
FOUNDATIONS & APPLICATIONS



Overview

Foundations
Probablistic Pipeline
Brief History
Problem with exact inference
Evidence lower bound

Simple model example

Applications
Crowd Clustering
Variational Autoencoders



Foundations



The Probablistic Pipeline

Problem/Question Model Selection Find Patterns Inference & Explore
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Inference is the main algorithmic problem
What does this model say about this data?
Goal: Find Scalable and General inference algorithms

Variational Inference is one solution to approximate
tractable inference



Brief History of Variational Inference
—

[Peterson and Anderson 1987) [Jordan et al. 1999] [Hinton and van Camp 1993]

o Variational Inference adapted its ideas from statistical
physics.
1 Concepts first emerged in late 80s with Peterson and

Anderson (1987) who used mean-field methods to fit
neural-network

71 Hinton and Van Camp (1993) furthered mean-field methods
for neural networks.

1 Michael Jordan’s lab at MIT generalized V.I. to many
probablistic models (Jordan et al., 1999)



Recent applications
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[Kingma and Welling 2013] [Rezende et al. 2014]

[Kucukelbir et al. 2015]

1 V. I. has become more scalable and easy to derive
(even automated in some cases)

1 Variational inference has been extended to

probablistic programming, reinforcement learning,
and etc.

1 Today we’ll introduce the basic pipeline of V.I.



Problems with exact inference

Suppose we have some posterior distribution that
we would like to compute by Bayesian inference:

1
p"(x) £ p(x|[D) = EP(DIX)p(X)

Latent variable Lquled the “evidence”

Observed Data  Often intractable to compute

We want to approximate the true posterior with
some close proxy distribution g



Variational Inference in a picture
—

q(x) o p*(x)

between distributions

. Set of possible proxy
distributions with different v

o Variational Inference converts the inference problem into an
optimization problem

7 User defines a family of proxy distributions g(x; v)

- Optimize the variational parameters v to bring g (x) as
“close” to p™(X) as possible



Theory: KL divergence
—

1 Measure of distance between distributions

-1 Forward KL divergence

pllg) = Zp

-1 Reverse KL dlvergence

KL (q|[p*) Zq ) log o

( )
(%)

(%)
(%)

7 *Note that KL(a | | b) divergence is 0 iff a = b




Theory: KL divergence
—

0 Minimizing reverse KL pushes g to underestimates the support of P

Minimizing forward KL pushes g to overestimate the support of P

Open times we want to accurately estimate a single mode of the
true posterior — Minimize reverse KL

71 Minimizing forward KL is referred to as expectation propagation

v True posterior p

Forward KL “Reverse KL Reverse KL

Kevin Murphy, “Machine Learning: A Probablistic Perspective”, Chp 21, pp. 734



Theory: Modifying reverse KL

Normalized posterior in reverse KL is intractable to

L (q|[p*) Zq log ))

The un-normalized posterior is often tractable to

p(x) £(p(x,D) = p*(x)Z

A modified KL divergence objective is then:

J(Q) = [KL (q| ‘ﬁ)] Computable

compute:

compute:




Theory: Formulating J(q)
—

7 Following the definition of KL divergence:

1@ = Y a60log 2
B N q(x)
= XX:Q( og 0
— Z (x) log ((x)) log Z

X

= KL (qllp*) ~{log Z|

Constant w.r.t q




Theory: Interpreting J(q)

Since KL divergence is strictly non-negative:

J(q) =KL (q||p") —log Z > —log Z = —log p(D)

Positive Log likelihood of data

A couple observations:
Minimizing J(q) is equivalent to minimizing KL(q | | p*)
-J(q) lower bounds the log-likelihood of the dataset

Hence our objective is to minimize J(q)



Theory: Evidence Lower Bound
—

-1 Alternatively, we can maximize the additive inverse:

L(q)|% —J(q) = —KL (ql[p*) +log Z < log Z = logp(D)

Variational Lower Bound
Evidence Lower Bound (ELBO)

- We will further discuss how to maximize the ELBO



Theory: Evidence Lower Bound
—

7 We may formulate J(q) in various ways:

= Y4 =

= [, [log q(x)] + E; |— log p(x)]

— —H (¢)) HE, [E(x)]

Entropy Expected energy

o1 First term wants @ to be more diffuse (sort of regularization)
o Second term wants ¢ to place its mass on the MAP estimate
1 ELBO is not convex! (optimizing converges to local optimum)



Theory: Evidence Lower Bound
B

7 We may formulate J(q) in various ways:

J(q)

L4 [log g(x) — log p(x)p(D|x)]

O log q(x) — log p(x) — log p(D|x)]

[

2, [— log p(D|x)] + KL (g(x)||p(x))]

Expected Negative Log-Likelihood Distance between ¢
and exact prior



1 So how do we maximize the ELBO?

L(q) & —J(q) = —KL (¢||[p*) +log Z < log Z = log p(D)



Theory: Mean Field Method

Let’s consider a popular form of variational
inference called Mean Field approximation. (Opper
and Saad 2001)

Assume the proxy q fully factorizes.

qu

One proxy distribution per dimension

Recall the ELBO

L(q) £ Zq ) log 3 < log p(D)



Theory: Mean Field Method

1 Let’s single out terms involving one factorized q;

L(gj) = ZH% (xs) llogp Zloqu Xk]

Notation: ‘\@ z;ég
ludi -
excluding ¢; qu X Zqu X; logp

X—j 1#] i
_ZQJ X j ZH% Xz Zlong(xk)+Qj(xj)
X—j 1#] k?éj

Z q;(x;) log f;(x;) Z q;(x;)log q;(x;) + const

g Terms including q;




Theory: Mean Field Method

-1 From the previous result:

Z qj(x;) log f;(x;) Z q;(x;)logq;(x;) + const

Xj

71 The resulting equation can be simplified as:
L(g;) = —KL (g;]| f;)

log fy X] ZHQ’L X logp E—Qj [lOgﬁ(X)]

X_j 1#£]



Theory: Mean Field Method

1
- Recall KL(a| |b) =0iffa=0b

- Hence, we may maximize L(q]') by setting q; = f;

1

q;(x;) = ZGXP(‘E—% [logﬁ(x)])

Normalization constant

71 Nice exact expression for Coordinate Ascent!



Blueprint algorithm for mean field V. I.

Derive a probablistic model for problem

Choose a proxy distribution g

Derive ELBO

Coordinate ascent on each @; (Ghahramani and Beal, 2001)

Repeat until convergence

Problem: Difficult to handle large datasets since
each update of the algorithm requires full iteration
through the dataset => Stochastic V. I. (won’t get
into)



Pros and Cons

Pros
Principled method to trade complexity for bias

Possible to assess convergence

Cons
Biased estimate of the true posterior

Model-specific algorithms need to be derived by hand



Example: Gaussian Mixture Model

p* (%)

q(x)
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[Images by Alp Kucukelbir]



A Sample Model

Take a sample hierarchical clustering model that is
based on a mixture of K 1D Gaussians with
variance 1

Generating data is a hierarchical process
We first sample K values ux from a Gaussian A4(0,02)

These values serve as the means of the Gaussians to
be mixed



A Sample Model

Then, we sample the “cluster” ¢, the data point
belongs to from Categorical(/x,...,1/k)

We treat c; as a one-hot encoded vector indicating
the cluster and define y to be the vector of all the
means

We then sample the data point x. from ¢ (ciTu, 1)
So the process goes like

Means -> Cluster of data point -> Sample from
Gaussian with corresponding mean



A Sample Model

Let x be the vector of sampled data points and ¢
be the matrix containing all ¢

The joint probability distribution of this model over
all variables is

p(ws e, %) =p(w) | | p(cIpCx; | )
=1

Note that p(x; | c;, ) follows (ciTu,, 1)



Inference Difficulties with Sample

Model

We want to infer p(M, ¢ | x) since W, ¢ are the latent
variables

P(K, ¢ |x) = p(K, ¢, x) [ p(x)
However,

p(x) = J p(w | | D, p(cdpCxilci, w)du
i=1 ¢

This integral is K-dimensional and isn’t equal to o
product of 1-dimensional integrals and hence is
intractable (O(K") to evaluate numerically)



Inference Difficulties with Sample

Model
-

1 We could try to rewrite p(x)

p(x) =) p(c) f p(w) | | pCx; e ) du
C =1

-1 However, the sum over ¢ sums over K" possible
elements, so calculating this formula is also
intfractable



Variational Inference with Sample

Model
e

1 Variational Inference to the Rescuel

1 We want to find q(M, ¢) that approximates
P(K, € |x)



Variational Updates For Sample Model

Let’s define the form of q(W, ¢)

K n
q(u, c) = ]_[q(uk; mk,si)]_[q(ci; Pi)
k=1 =1

q(ui; mg,s7) is a Gaussian with mean m, and

variance s,

q(c;; ¢i) assigns probabilities to ¢; based on a vector ¢,
of probabilities

q(M, ¢) decomposes into a product due to the mean
field assumption; the parametric forms of the factors
are chosen based on the form of p(M, ¢, x)



Variational Updates For Sample Model

N
-1 Hence, the variational parameters are @, m,,
and s, 2
7 Recall (where x = ([, ¢) here) the following two
equations
1 -
4j(x;) = - exp (B, [log p(x)])
J

p(s e, x)=p(w) | |p(cpCxilci, )
=1



Variational Updates For Sample Model

Hence, for the update for ¢, we obtain

q*(ci; (pl) X exp {logp(cl) + K I:lng(Xi | Ciuu’);m, 52] }

Expectations are over the factors of q related to the
variables after the semicolon unless otherwise indicated

log p(c) = log (1/K) = -log K, which is a constant

For the second term in the sum, note that as ¢ is an indicator
vector, we have that

K
p(x;|ci, )= l_[P(Xi | g )
k=1



Variational Updates For Sample Model

S I —
0 Recall that p(x; | c;, ) follows W(ciTu, 1)

1 Hence,

E [logp(x;|c;,w)] ZZCikE :logp(xi | i) mk,S;%]

k
- Z Cif I :—(xi — )* /25 mk,S,%] + const.
k

- Zcik (E [“k; mk,sl%] xX; — £ [Hi; mk,s,%] /2) + const
k



Variational Updates For Sample Model

= As ¢ is an indicator vector, we obtain for the update

for @i

- . 2
@ik  exp{E | pg; my, s

) -

7 [,ui;mk,s,%:l /2}

1 The expected values here are easy to calculate

given the form of q(u;my,s;), which is a Gaussian



Variational Updates For Sample Model

N
1 Recall (where x = (|, ¢) here)
1
J \“*J ZJ

o Also, recall

exp

g, [log p(x)])

p(s e, %) =p(w) | | p(cIpCx; | )
=1

= Hence, for the update for m _and s, we get

q(ux) o< exp{log p(ue) + 2o, E [log p(x; | ¢;, w); i, m_y, 8%, | }



Variational Updates For Sample Model

I
7 We then recall that y is drawn from #(0,0%) and

for th n lity, that : :
or the second equality, tha pCx; | e ) = [ [pCr: )
k=1

logq(uy) = log p(uy) + 2, E :logp(xi | cis ); i, My, S k] + const.
=log p(ui) + 2 E [cix log p(x; | ik ); ;] + const.
= —ui/20% + 25, E [cys @i ] log p(x; | py) + const.
= —uz/20°+ . pix (—(x- — uk)z/Z) + const.
= —Ui/20% + D5 PuXillk — Pixi /2 + const.
= (Zl SOikxi) U — (1/20 +2. SOik/z) u; + const.




Variational Updates For Sample Model

We then note that q(l,) is a Gaussian distribution
and update m, and s, ? according to the mean and
standard deviation of the Gaussian

m, — Zigaikxi 52: 1
X 1/02+Zig0ik’ . 1/02 43 ¢u




Deriving ELBO for Simple Model

o
71 Recall this equation for the ELBO:

L(q) Zq log ;

1 The ELBO can be rewritten as follows, where
expectations are taken over q(z) (here, z represents
the latent variables instead of x and p(z, x) = p(x)

) EiBo(q) = E [logp(z,x)] — E [logq(2)]



Deriving ELBO for Simple Model
—

0 Recall 5y e,x) = p(w) l_[p(ci)p(x,- |ciy 1)
i=1

K n
And
g =] JawsmsH] [ales )
k=1 i=1



Deriving ELBO for Simple Model

-
7 We then obtain (note that p and q factorize)

K
ELBO(m, s%, ) = ZE [108P(Hk); mk,Si]
k=1

+ > (B [logp(c,); ;] +E [log p(x; | ci, w); @1, m, %)
=1

n K
— Y E[logq(c;; ;)] — D E [logq(ux; my,sp)] -
i=1 k=1

1 Each of these expectations can be calculated in
closed form



Applications



Application: Crowd Clustering
—

1 Crowd sourcing has been used to label large datasets of data

71 Conventionally:
Experts provide the categories
Crowd labels images with predefined categories



Application: Crowd Clustering

Can workers discover categories?

We want to use the crowd to cluster images in an
unsupervised manner.

Describe the group
Describe the group

Describe the group

Describe the group




Application: Crowd Clustering

But how do we aggregate data from multiple
workers?

We extract binary pairwise labels from the worker
provided clusterings.

(image id 1,image id 2, same cluster? ) = (a;, b;, )
N +/-1
Then, we want to find some embedding of images

that aggregates the information provided by the
workers.

To do so, we first define a graphical model.



Blueprint algorithm for mean field V. .

Derive a probablistic model for problem

Choose a proxy distribution g
Derive ELBO

Coordinate ascent on each g; (Ghahramani and Beal, 2001)

Repeat until convergence



Blueprint algorithm for mean field V. .
N

71 Derive a probablistic model for problem

0 Choose a proxy distribution g

O Derive ELBO

0 Coordinate ascent on each g; (Ghahramani and Beal, 2001)

0O Repeat until convergence



Application: Crowd Clustering

Clusters are sampled from a Dirichlet process

Each cluster has a corresponding mean and variance which describe
a Multivariate Gaussian from which the images are sampled

Stick breaking weights of

Data Items
Dirichlet process

Cluster index\

Image embedding vector

$I19)SN[O _ OTWOIY,,

"~ Mean and variance

Worker traits

___ Image 1, image 2, worker id

Annotators Pairwise Labels



Application: Crowd Clustering

How do we define the likelihood of the data?

Workers act as a logistic classifier in the embedding
space

1
l¢|Xa,,Xp,, Wi,,Ti, ) =
p(t\|.+/-1 ’ o i) 1+ exp(—i:A¢)

The strength of the similarity is defined as

— , .
.At — \Xaf_vvjt?_(bt + Tj,

High A;: Images will be labeled as the same cluster

LowA;: Images will be labeled to be in different cluster




Application: Crowd Clustering

Then, the joint distribution is defined as

00 N
p((I), ‘/7 Zv Xa W7 T, £) — H p(Vk|a)p((I)k|m07/807 J07770) Hp(zz\V)p(XJq)zz)
k=1 =1
J

T
H VCCP{WJ } |UO TJ |UO H lt |Xat ) th’ gt Tj ) y

J:

Exact inference of the posterior is clearly
intfractable since we need to integrate over
variables with complex dependencies. (Encoded in
each of the factorized distributions)



Blueprint algorithm for mean field V. .
N

0 Derive a probablistic model for problem

11 Choose a proxy distribution g

O Derive ELBO

0 Coordinate ascent on each @; (Ghahramani and Beal, 2001)

0O Repeat until convergence



Application: Crowd Clustering

We instead use Variational Inference.

Define a factorized proxy posterior which doesn’t
model the full complexity between the variables.

Instead it represents a single mode of the true
posterior.

q(®,V,Z,X,W,T) H p(Vi|a)p(®x o, Bo, Jo,m0)

K J
Hq(Vk)q(q)k)H x;) | | alveep{W;})a(7)



Blueprint algorithm for mean field V. .
N

O Derive a probablistic model for problem

0 Choose a proxy distribution g

1 Derive ELBO

0 Coordinate ascent on each @; (Ghahramani and Beal, 2001)

0O Repeat until convergence



Application: Crowd Clustering

We define variational distributions for the first K
mixture components and fix the remainder to their
corresponding priors.

Then we can define a lower bound to the log
evidence

logp(ﬁlo-(z)ca 0-(7)-7 O-(Z)Ua &, 1My, 507 ‘]07 770)
>FEqlogp(®,V,Z, X, W,7,L) + H{q(®,V,Z, X, W,7)}



Blueprint algorithm for mean field V. .
N

O Derive a probablistic model for problem

0 Choose a proxy distribution g

O Derive ELBO

11 Coordinate ascent on each @; (Ghahramani and Beal, 2001)

-1 Repeat until convergence



Applications: Crowd Clustering
N
ik = q(zi = k) ~ exp (¢(€k,1) — PY(€ka +Ex2) + li’/’(&,z) - ¢(§€z,1 +&i,2)

D
T fJ-1E {x.xT}} — & _ _4_D
- Ty Ul Byfead )} - 5 (Dlog(r) ~log k| + 3 0(1 +mx — o) 3)

[oF]a = (EQ(%‘ = E)meTelaa+ D 2IMA)|[EAW;, x5, x5 W}
k

t:a,:i

+ 3 2|/\(At)|[Eq{thxatxztwjt}]dd)—l

pi = (I —tét: 1-1) v
q-wa- x o)’ Let’s not bother

ui =07 Y L/2+2MA) (uE,) w u,
t:j¢=j

-1
0%]ud, = (l/aa”+ > 2|A<Az>|[Eq{Y""’t}]d,dzm)

t:jg’:j
veep{pul} = (I-Bjo (1 -1I)) 'c;
A, = (B, {47}

where Np = ). g and X = Nik 3, QX



Application: Crowd Clustering
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Application: Crowd Clustering

Average assignment entropy (bits): 0.0029653

0.5 .
o "
. TR
SRS bedroom
—0.5F o e AL suburb
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living room
-1 . ﬁ ‘5 coast
) = forest|
: T highway|
-15 5 inside city
(0] mountain
open country
—2 street
tall building
office
_2.1: 1 1 J
=15 -1 -05 0 0.5 1 15

12345678 91011
Inferred Cluster



Application: Crowd Clustering

0.5

-1

Average assignment entropy (bits): 0.004792

%1 3 .
- 1%

1.5

Ground Truth
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Application: Variational Autoencoders

An autoencoder uses neural networks to represent
its input x in terms of latent variables z and then
uses this representation to generate output data x’
similar to the input

So we encode the input x using f, z = f(x), and then
decode z by some function g, X’ = g(z), where both
f and g depend on model parameters



Application: Variational Autoencoders

For variational autoencoders, we use neural
networks to model probability distributions pg(x | z)

and pg(z | x) instead of deterministic functions x* =

g(z) and z = f(x), where O represents model

parameters



Application: Variational Autoencoders

We assume that the input data x is generated by
first sampling z from a prior distribution pg(z)

and then sampling x from the distribution pg(x | z)

X can be discrete or continuous, but z is assumed to
be continuous

Note: Discrete versions of variational autoencoders
exist where z is discrete; see Rolfe 2017.



Application: Variational Autoencoders

We would like to model pg(x | z) and infer pgy(z | x)
given a large dataset and that the marginal
likelihood pg(x) is intractable

Calculating the expectations for the mean field
update equations may be intractable, so we don’t
use mean field inference

Again, since pg(x) and hence pg(z | x) is intractable,
we introduce a variational family qg(z | x) as an
approximation



Optimizing ELBO Without Mean-Field

Recall that the ELBO can be written in terms of the

KL divergence
L£(0,¢;xY) = —Dr1, (4 (2|x")|Ipe(2)) + Eqy, (zx o)) [10gp9(x(i)|z)]

Optimizing the ELBO can be challenging without the
mean field assumption since the gradient of the
ELBO may not have a closed form

We could use the Monte Carlo gradient estimator
(below), but it has high variance

VoEq, @ [f(2)] =Ey ) [f(2)V4y ) l0gas(2)] = L3, f(2)V 4, 0y 10g g (2V)



Reparametrization Trick

Notably, we can often rewrite a sample 7 from
dolz | X) using a deterministic differentiable function
of a noise variable € that is drawn from a
probability distribution p

Z = gp(€,x) with €~ p(e)

For this technique to work, z must be continuous
(otherwise, g wouldn’t be differentiable)



Example of Reparametrization Trick

]
0 let 2~ p(zlz) = N(p,0?)
7 We could also rewrite zas z = 1 + o€ € ~ N(0,1)



Optimizing ELBO Without Mean-Field
-

7 We can now write Monte Carlo estimators of
expectations of f(z) as follows

IEq(p(z|x(i)) [f(Z)] — ]Ep(e) [f(J¢ 6 X ] Z f g¢ (l) (z) where e(l) ~ p(E)

o Applying this technique to the ELBO for the
variational autoencoder, we obtain

L
FAB. ¢ xD) = 23 log pe(x®) . 2D) — log g (20D |x®
7 ¢
=1

where z(H!) = gd,(e(i’l),x(i)) and €Y ~ p(e)



Optimizing ELBO Without Mean-Field

If the K-L divergence can be evaluated analytically,
then we need only Monte Carlo estimate the second
term (this expression generally has less variance):
L
- . | 1 L
L5(0,¢:x") = =Dk 1(q4(2x")|lpe(2)) + + > (log pe(x'V[2"1))
=1

where z(H!) = g¢(e(i’l),x(i)) and €V ~ p(€)

Note that KL divergence from the prior acts as a
regularizer and the second term is negative

reconstruction error



Optimizing ELBO Without Mean-Field

We can take the gradient of either one of the ELBO
estimators and use it in a gradient-based optimizer
such as stochastic gradient ascent

We can also use minibatches with the ELBO
estimator using the equation below

IT AI

[:(9,¢,X) ~ ZAI( ¢ X]\I \[ ZE (]5 X(z )




Setup for Variational Autoencoder

Ps(z) is set to N(z; O, 1), the multivariate Gaussian
with mean O and covariance the identity matrix

Pe(x | Z) is set to a multivariate Gaussian for
continuous x or Bernoulli for binary x

dolZz | X) is set fo a multivariate Gaussian with
diagonal covariance matrix

l.e. log q¢(z|x(i)) = log N (z; pV, a2V1)
© and O are parameters set by neural networks
with one hidden layer



Setup for Variational Autoencoder

We use the reparametrization trick for the Gaussian
distribution similar to the example given before

The ELBO Monte Carlo estimator for this model is
L
0.¢:x9) ~ Z (1+10a((o§)2) = ()2 = (02) + 7 3 log po(xV]20)

=1

where z(4!) = u(z) +0D e and €V ~N(0,1)

Here, J represents the dimensionality of z, ©
represents element-wise product



Applications of Variational

Autoencoder

1 Generating handwritten digits (learned data

manifold for 2D latent space below from Kingma &

Welling 2014)
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QAVOVHHINN VWV BVIVIY W@ -~ —
QAU OHINININMHOEEBPBDIYOVY S W - - —
QOAQAOQOOMHIMNMMMNON M BDIID D W - - —
QOO MMNMMMMNM®DOIDD D — —
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OODOMOMMMMIN WP DD o e e
QO MM ("N 00 00 o e oo - —
QAN IS8 007000000 00 o o o~ 0~ o~
R L LI G U R
G~
Sl odogorororororrrraaoan~
SddaddadogrrrrrrrTrTIINN
SAddddgrrrrrrdFIFTITITRIRINN
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Applications of Variational

Autoencoder
—

1 Examples of handwritten digits generated by
variational autoencoder using 20 dimensional latent
space (also from Kingma & Welling 2014)

T_2OCEDP22P2908
1599171714194
§962832%32¢9
1349861 /7086
5417999 (6
6P70024§8127¢/
1529613643
797397927395 ¢
15295904154
287287 L,2Z221%



Applications of Variational
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1 Comparison of Variational Autoencoder (labeled as
AEVB) compared to other methods (from Kingma &
Welling 2014)
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7 Learning representations of images (from Kulkarni
et al.,, 2015)
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