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Foundations



The Probablistic Pipeline

¨ Inference is the main algorithmic problem
¨ What does this model say about this data? 
¨ Goal: Find Scalable and General inference algorithms
¨ Variational Inference is one solution to approximate 

tractable inference

Problem/Question Model Selection Find Patterns Inference & Explore



Brief History of Variational Inference

¨ Variational Inference adapted its ideas from statistical 
physics. 

¨ Concepts first emerged in late 80s with Peterson and 
Anderson (1987) who used mean-field methods to fit a 
neural-network 

¨ Hinton and Van Camp (1993) furthered mean-field methods 
for neural networks.

¨ Michael Jordan’s lab at MIT generalized V.I. to many 
probablistic models (Jordan et al., 1999)



Recent applications

¨ V. I. has become more scalable and easy to derive 
(even automated in some cases)  

¨ Variational inference has been extended to 
probablistic programming, reinforcement learning, 
and etc. 

¨ Today we’ll introduce the basic pipeline of V.I. 



Problems with exact inference 

¨ Suppose we have some posterior distribution that 
we would like to compute by Bayesian inference:  

¨ We want to approximate the true posterior with 
some close proxy distribution 𝑞

𝑝∗ 𝐱 ≜ 𝑝 𝐱	 	𝐷) =
1
𝑍 𝑝(𝐷 𝐱 𝑝(𝐱)

Called the “evidence”
Often intractable to compute

Latent variable

Observed Data



Variational Inference in a picture

¨ Variational Inference converts the inference problem into an 
optimization problem

¨ User defines a family of proxy distributions 𝑞(𝐱; 𝑣)
¨ Optimize the variational parameters 𝑣 to bring 𝑞(𝐱) as 

“close” to 𝑝∗(𝐱) as possible

𝑝∗ 𝐱𝑞 𝐱

𝑣/0/1

𝑣∗
Some measure of distance 
between distributions

Set of possible proxy 
distributions with different 𝑣



Theory: KL divergence

¨ Measure of distance between distributions
¨ Forward KL divergence

¨ Reverse KL divergence

¨ *Note that KL(a||b) divergence is 0 iff a = b



Theory: KL divergence

¨ Minimizing reverse KL pushes 𝑞 to underestimates the support of 𝑝
¨ Minimizing forward KL pushes 𝑞 to overestimate the support of 𝑝
¨ Open times we want to accurately estimate a single mode of the 

true posterior – Minimize reverse KL 
¨ Minimizing forward KL is referred to as expectation propagation

Kevin Murphy, “Machine Learning: A Probablistic Perspective”, Chp 21, pp. 734

Reverse KL Forward KL Reverse KL 

True posterior 𝑝

Proxy 𝑞



¨ Normalized posterior in reverse KL is intractable to 
compute: 

¨ The un-normalized posterior is often tractable to 
compute: 

¨ A modified KL divergence objective is then: 

Theory: Modifying reverse KL

Computable



Theory: Formulating J(q)

¨ Following the definition of KL divergence: 

Constant w.r.t 𝑞



Theory: Interpreting J(q)

¨ Since KL divergence is strictly non-negative:

¨ A couple observations: 
¤ Minimizing J(q) is equivalent to minimizing KL(q||p*)
¤ -J(q) lower bounds the log-likelihood of the dataset
¤ Hence our objective is to minimize J(q)

Positive Log likelihood of data



Theory: Evidence Lower Bound

¨ Alternatively, we can maximize the additive inverse:

¨ We will further discuss how to maximize the ELBO 

Variational Lower Bound
Evidence Lower Bound (ELBO)



Theory: Evidence Lower Bound

¨ We may formulate J(q) in various ways: 

¨ First term wants 𝑞 to be more diffuse (sort of regularization)
¨ Second term wants 𝑞 to place its mass on the MAP estimate 
¨ ELBO is not convex! (optimizing converges to local optimum) 

Entropy Expected energy



Theory: Evidence Lower Bound

¨ We may formulate J(q) in various ways: 

Expected Negative Log-Likelihood Distance between q 
and exact prior



¨ So how do we maximize the ELBO? 



Theory: Mean Field Method

¨ Let’s consider a popular form of variational
inference called Mean Field approximation. (Opper
and Saad 2001) 

¨ Assume the proxy q fully factorizes.

¨ Recall the ELBO  
One proxy distribution per dimension



Theory: Mean Field Method

¨ Let’s single out terms involving one factorized 𝑞2

Terms including 𝑞2

Notation: 
excluding 𝑞2



Theory: Mean Field Method

¨ From the previous result: 

¨ The resulting equation can be simplified as: 



Theory: Mean Field Method

¨ Recall KL(a||b) = 0 iff a = b

¨ Hence, we may maximize 𝐿 𝑞2 by setting 𝑞2 = 𝑓2

¨ Nice exact expression for Coordinate Ascent! 

Normalization constant



Blueprint algorithm for mean field V. I.

¨ Derive a probablistic model for problem
¨ Choose a proxy distribution 𝑞
¨ Derive ELBO 
¨ Coordinate ascent on each 𝑞/ (Ghahramani and Beal, 2001) 

¨ Repeat until convergence

¨ Problem: Difficult to handle large datasets since 
each update of the algorithm requires full iteration 
through the dataset => Stochastic V. I. (won’t get 
into)



Pros and Cons

¨ Pros
¤ Principled method to trade complexity for bias
¤ Possible to assess convergence 

¨ Cons
¤ Biased estimate of the true posterior
¤ Model-specific algorithms need to be derived by hand



Example: Gaussian Mixture Model

𝑞 𝐱

𝑝∗ 𝐱

[Images by Alp Kucukelbir]



A Sample Model

¨ Take a sample hierarchical clustering model that is 
based on a mixture of K 1D Gaussians with 
variance 1

¨ Generating data is a hierarchical process
¨ We first sample K values      from a Gaussian 
¨ These values serve as the means of the Gaussians to 

be mixed



A Sample Model

¨ Then, we sample the “cluster” ci the data point 
belongs to from 

¨ We treat ci as a one-hot encoded vector indicating 
the cluster and define    to be the vector of all the 
means

¨ We then sample the data point xi from
¨ So the process goes like 
Means -> Cluster of data point -> Sample from 
Gaussian with corresponding mean



A Sample Model

¨ Let x be the vector of sampled data points and c
be the matrix containing all ci

¨ The joint probability distribution of this model over 
all variables is 

¨ Note that                 follows 



Inference Difficulties with Sample 
Model
¨ We want to infer p(μ, c |x) since μ, c are the latent 

variables
¨ p(μ, c |x) = p(μ, c, x) / p(x)
¨ However, 

¨ This integral is K-dimensional and isn’t equal to a 
product of 1-dimensional integrals and hence is 
intractable (O(Kn) to evaluate numerically)



Inference Difficulties with Sample 
Model

¨ We could try to rewrite p(x)

¨ However, the sum over c sums over Kn possible 
elements, so calculating this formula is also 
intractable



Variational Inference with Sample 
Model

¨ Variational Inference to the Rescue!
¨ We want to find q(μ, c) that approximates 
p(μ, c |x)



Variational Updates For Sample Model

¨ Let’s define the form of q(μ, c)

¨ is a Gaussian with mean mk and 
variance sk

2 

¨ assigns probabilities to ci based on a vector ϕi
of probabilities 

¨ q(μ, c) decomposes into a product due to the mean 
field assumption; the parametric forms of the factors 
are chosen based on the form of p(μ, c, x)



Variational Updates For Sample Model

¨ Hence, the variational parameters are ϕi, mk, 
and sk

2

¨ Recall (where x = (μ, c) here) the following two 
equations



Variational Updates For Sample Model

¨ Hence, for the update for ϕi, we obtain 

¨ Expectations are over the factors of q related to the 
variables after the semicolon unless otherwise indicated

¨ log p(ci) = log (1/K) = -log K, which is a constant
¨ For the second term in the sum, note that as ci is an indicator 

vector, we have that 



Variational Updates For Sample Model

¨ Recall that                 follows 
¨ Hence, 



Variational Updates For Sample Model

¨ As ci is an indicator vector, we obtain for the update 
for ϕik,

¨ The expected values here are easy to calculate 
given the form of               , which is a Gaussian



Variational Updates For Sample Model

¨ Recall (where x = (μ, c) here)

¨ Also, recall 

¨ Hence, for the update for mk and sk, we get



Variational Updates For Sample Model

¨ We then recall that μk is drawn from              and 
for the second equality, that 



Variational Updates For Sample Model

¨ We then note that q(μk) is a Gaussian distribution 
and update mk and sk

2 according to the mean and 
standard deviation of the Gaussian



Deriving ELBO for Simple Model

¨ Recall this equation for the ELBO:

¨ The ELBO can be rewritten as follows, where 
expectations are taken over q(z) (here, z represents 
the latent variables instead of x and p(z, x) =        
) 



Deriving ELBO for Simple Model

¨ Recall 

And



Deriving ELBO for Simple Model

¨ We then obtain (note that p and q factorize)

¨ Each of these expectations can be calculated in 
closed form



Applications



Application: Crowd Clustering

¨ Crowd sourcing has been used to label large datasets of data
¨ Conventionally: 

¤ Experts provide the categories
¤ Crowd labels images with predefined categories 



Application: Crowd Clustering

¨ Can workers discover categories?
¨ We want to use the crowd to cluster images in an 

unsupervised manner.



Application: Crowd Clustering

¨ But how do we aggregate data from multiple 
workers? 

¨ We extract binary pairwise labels from the worker 
provided clusterings. 

¨ Then, we want to find some embedding of images 
that aggregates the information provided by the 
workers. 

¨ To do so, we first define a graphical model. 

image	id	1, image	id	2, same	cluster? = (𝑎/, 𝑏/, 𝑙)
+/- 1



Blueprint algorithm for mean field V. I.

¨ Derive a probablistic model for problem
¨ Choose a proxy distribution 𝑞
¨ Derive ELBO 
¨ Coordinate ascent on each 𝑞/ (Ghahramani and Beal, 2001) 

¨ Repeat until convergence



Blueprint algorithm for mean field V. I.

¨ Derive a probablistic model for problem
¨ Choose a proxy distribution 𝑞
¨ Derive ELBO 
¨ Coordinate ascent on each 𝑞/ (Ghahramani and Beal, 2001) 

¨ Repeat until convergence



Application: Crowd Clustering

¨ Clusters are sampled from a Dirichlet process
¨ Each cluster has a corresponding mean and variance which describe 

a Multivariate Gaussian from which the images are sampled

Image embedding vector

Cluster index

Stick breaking weights of 
Dirichlet process

Mean and variance

Image 1, image 2, worker id
Worker traits



¨ How do we define the likelihood of the data? 
¨ Workers act as a logistic classifier in the embedding 

space

¨ The strength of the similarity is defined as 

¨ High At: Images will be labeled as the same cluster
¨ Low At: Images will be labeled to be in different cluster

Application: Crowd Clustering

+/- 1



Application: Crowd Clustering

¨ Then, the joint distribution is defined as 

¨ Exact inference of the posterior is clearly 
intractable since we need to integrate over 
variables with complex dependencies. (Encoded in 
each of the factorized distributions) 



Blueprint algorithm for mean field V. I.

¨ Derive a probablistic model for problem
¨ Choose a proxy distribution 𝑞
¨ Derive ELBO 
¨ Coordinate ascent on each 𝑞/ (Ghahramani and Beal, 2001) 

¨ Repeat until convergence



Application: Crowd Clustering

¨ We instead use Variational Inference. 
¨ Define a factorized proxy posterior which doesn’t 

model the full complexity between the variables. 
Instead it represents a single mode of the true 
posterior. 



Blueprint algorithm for mean field V. I.

¨ Derive a probablistic model for problem
¨ Choose a proxy distribution 𝑞
¨ Derive ELBO 
¨ Coordinate ascent on each 𝑞/ (Ghahramani and Beal, 2001) 

¨ Repeat until convergence



¨ We define variational distributions for the first K 
mixture components and fix the remainder to their 
corresponding priors. 

¨ Then we can define a lower bound to the log 
evidence

Application: Crowd Clustering



Blueprint algorithm for mean field V. I.

¨ Derive a probablistic model for problem
¨ Choose a proxy distribution 𝑞
¨ Derive ELBO 
¨ Coordinate ascent on each 𝑞/ (Ghahramani and Beal, 2001) 

¨ Repeat until convergence



Applications: Crowd Clustering

Let’s not bother



Application: Crowd Clustering



Application: Crowd Clustering



Application: Crowd Clustering



Application: Variational Autoencoders

¨ An autoencoder uses neural networks to represent 
its input x in terms of latent variables z and then 
uses this representation to generate output data x’ 
similar to the input

¨ So we encode the input x using f, z = f(x), and then 
decode z by some function g, x’ = g(z), where both 
f and g depend on model parameters



Application: Variational Autoencoders

¨ For variational autoencoders, we use neural 
networks to model probability distributions pθ(x|z)
and pθ(z|x) instead of deterministic functions x’ = 
g(z) and z = f(x), where θ represents model 
parameters



Application: Variational Autoencoders

¨ We assume that the input data x is generated by 
first sampling z from a prior distribution pθ(z)
and then sampling x from the distribution pθ(x|z)

¨ x can be discrete or continuous, but z is assumed to 
be continuous

¨ Note: Discrete versions of variational autoencoders
exist where z is discrete; see Rolfe 2017.



Application: Variational Autoencoders

¨ We would like to model pθ(x|z) and infer pθ(z|x) 
given a large dataset and that the marginal 
likelihood pθ(x) is intractable

¨ Calculating the expectations for the mean field 
update equations may be intractable, so we don’t 
use mean field inference

¨ Again, since pθ(x) and hence pθ(z|x) is intractable, 
we introduce a variational family qΦ(z|x) as an 
approximation



Optimizing ELBO Without Mean-Field

¨ Recall that the ELBO can be written in terms of the 
KL divergence

¨ Optimizing the ELBO can be challenging without the 
mean field assumption since the gradient of the 
ELBO may not have a closed form

¨ We could use the Monte Carlo gradient estimator 
(below), but it has high variance



Reparametrization Trick

¨ Notably, we can often rewrite a sample    from 
qΦ(z|x) using a deterministic differentiable function 
of a noise variable ε that is drawn from a 
probability distribution p 

¨ For this technique to work, z must be continuous 
(otherwise, g wouldn’t be differentiable)



Example of Reparametrization Trick

¨ Let 
¨ We could also rewrite z as



Optimizing ELBO Without Mean-Field

¨ We can now write Monte Carlo estimators of 
expectations of f(z) as follows

¨ Applying this technique to the ELBO for the 
variational autoencoder, we obtain 



Optimizing ELBO Without Mean-Field

¨ If the K-L divergence can be evaluated analytically, 
then we need only Monte Carlo estimate the second 
term (this expression generally has less variance):

¨ Note that KL divergence from the prior acts as a 
regularizer and the second term is negative 
reconstruction error



Optimizing ELBO Without Mean-Field

¨ We can take the gradient of either one of the ELBO 
estimators and use it in a gradient-based optimizer 
such as stochastic gradient ascent

¨ We can also use minibatches with the ELBO 
estimator using the equation below



Setup for Variational Autoencoder

¨ pθ(z) is set to Ν(z; 0, I), the multivariate Gaussian 
with mean 0 and covariance the identity matrix

¨ pθ(x|z) is set to a multivariate Gaussian for 
continuous x or Bernoulli for binary x

¨ qΦ(z|x) is set to a multivariate Gaussian with 
diagonal covariance matrix

¨ I.e. 
¨ Θ and Φ are parameters set by neural networks 

with one hidden layer



Setup for Variational Autoencoder

¨ We use the reparametrization trick for the Gaussian 
distribution similar to the example given before

¨ The ELBO Monte Carlo estimator for this model is 

¨ Here, J represents the dimensionality of z,     
represents element-wise product



Applications of Variational
Autoencoder

¨ Generating handwritten digits (learned data 
manifold for 2D latent space below from Kingma & 
Welling 2014)



Applications of Variational
Autoencoder

¨ Examples of handwritten digits generated by 
variational autoencoder using 20 dimensional latent 
space (also from Kingma & Welling 2014)



Applications of Variational
Autoencoder

¨ Comparison of Variational Autoencoder (labeled as 
AEVB) compared to other methods (from Kingma & 
Welling 2014)



Applications of Variational
Autoencoder

¨ Learning representations of images (from Kulkarni
et al., 2015)


