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Review of Hidden Markov Models
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● A tool for representing probability distributions over sequences of 
observations

● A type of (dynamic) Bayesian network
● Main assumptions: hidden states and Markov property
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● a probability distribution over the initial state
● the state transition matrix
● the output model (emission matrix)
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Learning in HMMs
● Generative setting: model the joint distribution of inputs and outputs
● Obtain the maximum likelihood estimate for the parameters of the HMM 

given a set of output sequences
● No tractable algorithm to solve this exactly
● Baum-Welch (especial case of EM algorithm) can be used to obtain a local 

maximum likelihood
● Baum-Welch makes use of the forward-backward algorithm
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Baum-Welch
1. Initialize the model parameters: initial state distribution, transition and 

emission matrices
2. Compute the probability of being in state i at time t given an observed 

sequence and the current estimate of the model parameters
3. Compute the probability of being in state i and state j at times t and t+1, 

respectively, given an observed sequence and the current estimate of the 
model parameters

4. Use these probabilities to update the estimate of the model parameters
5. Repeat 2-4 iteratively until desired level of convergence
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Forward-backward
● Forward pass: recursively compute alpha(t), the joint probability of state 

S(t) and the sequence of observations Y(1) to Y(t)

● Backward pass: compute beta(t), the conditional probabilities of the 
observations Y(t+1) to Y(T) given the state S(t)

● These probabilities are used to compute the expectations needed in 
Baum-Welch
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Inference in HMMs
● Viterbi: a dynamic programming algorithm which can be used to find the 

most likely sequence of states given a sequence of observations
● Richer hidden state representations can lead to intractability when 

inferring hidden states from observations
● Monte Carlo and variational methods can be used to approximate the 

posterior distribution of the states given a set of observations



Common applications of HMMs
● Speech/phoneme recognition
● Part-of-speech tagging
● Computational molecular biology
● Data compression
● Vision: image sequence modelling, object tracking
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HMM for POS Tagging
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● Y = “Fish sleep”
● S = (N, V)

● Y = “The dog ate my homework”
● S = (D, N, V, D, N)

● Y = “The fox jumped over the fence”
● S = (D, N, V, P, D, N) 



HMM for Speech Recognition
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Challenges and Limitations
● HMMs model the joint distribution of states and observations; with a 

(traditionally) generative learning procedure, we lose predictive power
● Number of possible sequences grows exponentially with sequence length, 

which is a challenge for large margin methods
● The conditional independence assumption is too restrictive for many 

applications
● HMMs are based on explicit feature representations and lack the ability to 

model nonlinear decision boundaries
● HMMs cannot account for overlapping features



Hidden Markov Support Vector Machines
Y Altun, I Tsochantaridis and T Hoffman (ICML 2003)
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Quick Review of SVMs
● Non-probabilistic binary linear 

classifier
● Find the hyperplane which maximizes 

the margins
● Samples on the margin are called 

support vectors
● Soft margins can be used (with slack 

variables)
● Nonlinear classification can be 

achieved through the kernel trick 
(mapping inputs into high 
dimensional feature spaces)
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Quick Review of SVMs
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● Non-probabilistic binary linear 
classifier

● Find the hyperplane which maximizes 
the margins

● Samples on the margin are called 
support vectors

● Soft margins can be used (with slack 
variables)

● Nonlinear classification can be 
achieved through the kernel trick 
(mapping inputs into high 
dimensional feature spaces)



Limitations of Traditional HMMs
● Typically trained in non-discriminative manner
● Based on explicit feature representations and lack the power of 

kernel-based methods
● The conditional independence assumption is often too restrictive
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Advantages of HM-SVMs
● Discriminative approach to modeling
● Can account for overlapping features (labels can depend directly on 

features of past or future observations)
● Maximum margin principle
● Kernel-centric approach to learning nonlinear discriminant functions

Inherited from HMMs:

● Markov chain dependency structure between labels
● Efficient dynamic programming formulation
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Input-Output Mappings via Joint Feature Functions

Key idea: extract features not only from the input pattern (as in binary 
classification), but also jointly from input-output pairs

19

discriminant function

kernel trick



Hidden Markov Chain Discriminants
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Problem description Feature representation



Hidden Markov Chain Discriminants
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POS tagging example:

●            denotes the input feature 
of “rain” occurring at position s

●                 encodes whether the 
word at t is a noun or not

●          = 1 indicates the 
conjunction of these two 
predicates (a sequence where 
the word at s is “rain” and the 
word at t is a noun)

In HMMs, we use only                                            
and



Hidden Markov Chain Discriminants

22

Rewriting the inner product between 
feature vectors for different sequences:

The similarity between sequences depends on the number of 
common two-label fragments and on the inner product between 
the feature representation of patterns with common labels.



Structured Perceptron Learning
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Hidden Markov Perceptron Learning
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To avoid explicit evaluation of feature maps and direct representation of the discriminant 
function, we derive the dual of the perceptron algorithm:

Decompose F into two contributions:

Transition matrix

Emission matrix
Viterbi



Hidden Markov Perceptron Learning
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“Perceptron-style” update

Viterbi decoding



We want to find the weight vector w which maximizes                 .

Hidden Markov SVM
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Define the margin of a training example with respect to F:

Add constraint to prevent data points from falling into the margins:

We get an optimization problem with a quadratic objective:



Hidden Markov SVM
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Replace each linear constraint with an equivalent set of linear constraints:

Rewrite constraints by introducing an additional threshold theta for every example:

Obtain dual formulation:



HM-SVM Optimization Algorithm
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● Although we have a large set of possible label sequences, the actual 
solution might be extremely sparse (only a few negative pseudo-examples 
will become support vectors)

● We want to design an algorithm that exploits the anticipated sparseness 
of the solution

● Optimize W iteratively: at each iteration, optimize over the subspace 
spanned by all alpha_i(y) for a fixed i (i-th subspace)

● Use a working set approach to optimize over the i-th subspace, adding at 
most one negative pseudo-example to the working set at a time



HM-SVM Optimization Algorithm
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Objective for the i-th subspace, 
to be maximized over the 
alpha_i while keeping all other 
alpha_j fixed:



HM-SVM Optimization Algorithm
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Viterbi decoding

Initialize working set

Add negative pseudo-example to working 
set and optimize in the i-th subspace

Remove from the working set the 
sequences for which alpha_i is zero

Return current solution 
when constraint is broken



Soft Margin HM-SVM

● Use same working set approach from Algorithm 2, but with different 
constraints in the quadratic optimization (step 8)
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Lagrangian:

● In the non-separable case, we can introduce slack variables to allow 
margin violations
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Results for Named Entity Classification
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Results for Part-of-Speech Tagging



Large Margin Hidden Markov Models
for Automatic Speech Recognition

F Sha and L K Saul (NIPS 2007)
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What are we trying to do?
● Infer correct hidden state sequence y = [y1,y2,...,yT] given observation 

sequence X = [x1,x2,...,xT]
● In automatic speech recognition (ASR), y can be words, phonemes, etc. In 

this instance y is a set of 48 phonetic classes, each represented by a state 
in the HMM

● X is 39-dimensional real-valued acoustic feature vector (MFCCs)
● Continuous density is needed to model emissions (we will use gaussian 

mixture models)
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GMMs for multiway classification
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General form of mixture model

Gaussian mixture model



Learning Parameters for GMM
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● Initialize parameters        
θ = {τ,μ1,μ2,Σ1,Σ2}

● Given current 
parameters, compute 
membership probability 
(i.e. soft clustering) for 
each data point (E-step)

● Adjust θ, such that it best 
explains the points 
assigned to each cluster  
(M-step)          



Large Margin GMMs
● In EM, we seek to maximize the joint likelihood of observed feature 

vectors and label sequences
● This however does not minimize phoneme or word error rates, which are 

more relevant for automatic speech recognition
● Unlike EM, we seek to maximize the distance between labeled examples
● Decision rule for single ellipsoid (i.e. N(μi,Σi))
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Large Margin GMMs
● Decision rule for single ellipsoid (i.e. N(μi,Σi))

which can be reformulated as
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Large Margin GMMs
● Hard-margin maximization for single ellipsoid per class
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Regularizes the scale of ellipsoids
Enforces margin 
condition

Restricts the matrix 
to be positive 
semidefinite 



Large Margin GMMs
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● Soft-margin (i.e. with slack variables)



● How does this margin maximization criteria generalize to case where each 
class is modeled as a mixture?

● Generate a “proxy label” for each data point (xn,yn,mn), where mn 
represents the mixture component label
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Large Margin GMMs



● Reminder: HMM states are phonemes, observations are low-level 
spectral features of the recording

● Model emission densities with gaussian mixture models
● Compute a score over a sequence of observations and states (note that 

number of incorrect sequences  grows as  O(CT) )

● We can then define our margin constraints as 
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Sequential classification with CD-HMMs

Hamming Distance



● Number of constraints grows exponentially with the sequence length, 
there is 1 constraint for each incorrect sequence s

● Collapse the constraints
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Sequential classification with CD-HMMs

Softmax upper 
bound (why? 
differentiable with 
respect to model 
params)

i.e. log-likelihood of 
target sequence 
must be at least as 
good as next best 
one + handicap



● Full convex optimization problem:
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Sequential classification with CD-HMMs



Experiments
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● Used TIMIT speech corpus for phonetic recognition
● Error rate using hamming distance, compared to EM baseline
● Utterance-based training is better than frame-based training



Context-Dependent Pre-Trained Deep Neural 
Networks for Large-Vocabulary Speech Recognition

G Dahl, D Yu, L Deng and A Acero (2012)
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HMM for Speech Recognition
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CD-DNN-HMM
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● Key Concepts
○  Context-dependent states in HMM
○  Acoustic model as a deep belief network

■ Using restricted boltzmann machines
○  Pre-training of deep neural network
○  Deep neural network HMM hybrid acoustic model

Let’s have a look at what these things mean!



Context Dependence
● Large vocabulary systems do not use words as units of sound

○ Vocabularies can consist of tens of thousands of words
○ It’s difficult to find enough examples of every word even in large training datasets
○ Words not seen in training cannot be learned

● Use sub-word units
○ There are many more instances of sub-word units in a corpus than of words and 

therefore HMM parameters can be better estimated
○ Sub-word units can be combined to form new words
○ Usually called phones
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Context Dependence
● Consider the word ROCK for example. Phonetically, we can write that as 

R-AO-K
● An HMM where states are context-independent phonemes is plausible
● Phonemes are however very coarse units

○ When /AO/ is preceded by /R/ and followed by /K/, it has a different spectral signature 
than when it is preceded by /B/ and followed by /L/ as in the word ball

● We try to capture this variability, by considering phonemes in context
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Context Dependence
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● Number of triphones can be 
very large

● Realizing the amount of 
overlap between triphones, 
can we create a “codebook” 
by clustering triphone 
states that are similar?

● Each cluster called a senone
● In the model under 

consideration, these are the 
HMM states



CD-DNN-HMM
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● Key Concepts
○  Context-dependent states in HMM
○  Acoustic model as a deep belief network

■ Using restricted boltzmann machines
○  Pre-training of deep neural network
○  Deep neural network HMM hybrid acoustic model



Joint probability over (v,h), where 

Restricted Boltzmann Machines
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● Undirected graphical 
model, where v = visible 
units (our data) and h = 
the hidden units b

c 

Energy for (v,h) pair, where c and b 
are bias terms (for binary data)



Joint probability over (v,h), where 

Restricted Boltzmann Machines 
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● Undirected graphical 
model, where v = visible 
units (our data) and h = 
the hidden units b

c 

Energy for (v,h) pair, for real-valued 
feature vectors 



Restricted Boltzmann Machines
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● We can define a per-training-case log likelihood function as

● Where F(V) is known as the free energy and defined as

● In practice, gradient of log likelihood of data in RBM is hard 
to compute,  so use MCMC methods (e.g. Gibbs sampling)

perform stochastic 
gradient descent on this 



Restricted Boltzmann Machines 
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● Because there are no intra-layer connections, given v, we can easily infer 
the distribution over hidden units (and vice versa)

● This looks a lot like feedforward propagation in a neural network. Later 
this will allow us to use the weights of an RBM to initialize a feed-forward 
network. 



CD-DNN-HMM
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● Key Concepts
○  Context-dependent states in HMM
○  Acoustic model as a deep belief network

■ Using restricted boltzmann machines
○  Pre-training of deep neural network
○  Deep neural network HMM hybrid acoustic model



Pre-training a Deep Neural Network 
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● Stack a series of RBMs
● Transfer learned weights to a 

feedforward deep neural network 
and add softmax output layer

● Refine weights of DNN with labeled 
data 

● Output of DNN are treated as 
“senones”

● Advantages: 
○ Can use large set of 

unsupervised data for 
pretraining, smaller one to 
further refine pre-trained DNN

○ Often achieves lower training 
error

○ Sort of data dependent 
regularization

MFCCs



CD-DNN-HMM
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● Key Concepts
○  Context-dependent states in HMM
○  Acoustic model as a deep belief network

■ Using restricted boltzmann machines
○  Pre-training of deep neural network
○  Deep neural network HMM hybrid acoustic model



Model Architecture
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● The decoded word sequence             
is determined as    

where           is the language     
model probability and the acoustic 
model is



Experimental Results
● Bing mobile voice search application: ex. “Mcdonald's”,”Denny’s 

restaurant”
● Sampled at 8kHz
● Collected under real usage scenarios, so contains all kinds of variations 

such as noise, music, side-speech, accents, sloppy pronunciation
● Language Model: 65K word unigrams, 3.2 million word bi-grams, and 1.5 

million word trigrams
● Sentence length is 2.1 tokens
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Experimental Results
● They computed sentence accuracy instead of word accuracy

○ Difficulties with word accuracy
■ “Mc-Donalds”, “McDonalds”
■ “Walmart”, “Wal-Mart”
■ “7-eleven”, “7 eleven”, “seven-eleven”

○ Users only care if find the business or not, so the will repeat whole phrase if one if the 
words is not recognized

● Maximum 94% accuracy
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Experimental Results
● Baseline Systems

○ Performance of best CD-GMM-HMM summarized in table below
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Maximum likelihood
Maximum mutual information

Minimum phone error



Experimental Results
● Context independent vs. context dependent state labels
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Experimental Results
● Pre-training improves accuracy
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Experimental Results
● Accuracy as a function of the number of layers in DNN
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Experimental Results
● Training time
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Experimental Results
● Training time

○ So, to train a 5-layer CD-DNN-HMM, pre-training takes about
(0.2 x 50) + (0.5 x 20) +  (0.6 x 20) +  (0.7 x 20) +  (0.8 x 20) = 62 hours  

○ Fine-tuning takes about 1.4 x 12 = 16.8 hours (for presented results 33.6 hours)
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Experimental Results
● Decoding time
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Conclusions
● CD-DNN-HMM performs better than its rival, the CD-GMM-HMM
● It is however more computationally expensive
● Bottlenecks

○ The bottleneck in the training process is the mini-batch stochastic gradient descent (SGD) 
algorithm. 

○ Training in the study used the embedded Viterbi algorithm, which is not optimal for 
MFCCs
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