
Classification

Efficient Applications to Tree-Based Multi-class Models

Anish Thilagar

Ashwin Balakrishna

May 2, 2017

CS 159 - Caltech

1

Motivation

Classification

In the standard classification problem, we have items that each belong to

one of k categories. To classify, calculate score for each category and

pick the best one.

What happens when this framework doesn’t work?

• Some items in multiple categories

• Some types of misclassifications extremely costly

• n extremely large

We turn to extreme classification.

2

Classification

In the standard classification problem, we have items that each belong to

one of k categories. To classify, calculate score for each category and

pick the best one.

What happens when this framework doesn’t work?

• Some items in multiple categories

• Some types of misclassifications extremely costly

• n extremely large

We turn to extreme classification.

2

Classification

In the standard classification problem, we have items that each belong to

one of k categories. To classify, calculate score for each category and

pick the best one.

What happens when this framework doesn’t work?

• Some items in multiple categories

• Some types of misclassifications extremely costly

• n extremely large

We turn to extreme classification.

2

Classification

In the standard classification problem, we have items that each belong to

one of k categories. To classify, calculate score for each category and

pick the best one.

What happens when this framework doesn’t work?

• Some items in multiple categories

• Some types of misclassifications extremely costly

• n extremely large

We turn to extreme classification.

2

Classification

In the standard classification problem, we have items that each belong to

one of k categories. To classify, calculate score for each category and

pick the best one.

What happens when this framework doesn’t work?

• Some items in multiple categories

• Some types of misclassifications extremely costly

• n extremely large

We turn to extreme classification.

2

3

Examples

• Classifying animals along phylogenetic tree

• Classifying text by genre

• Classifying patent documents by categories

• Gene/biological classification

4

Examples

• Classifying animals along phylogenetic tree

• Classifying text by genre

• Classifying patent documents by categories

• Gene/biological classification

4

Examples

• Classifying animals along phylogenetic tree

• Classifying text by genre

• Classifying patent documents by categories

• Gene/biological classification

4

Examples

• Classifying animals along phylogenetic tree

• Classifying text by genre

• Classifying patent documents by categories

• Gene/biological classification

4

Goal

Given a trained model, normal classification is O(k). This becomes bad

when k is large.

Given k labels, what’s the best classification time we can hope for?

From Kraft’s inequality, we know the minimum time to just compute the

bit representation of a label X is O(H(X)), the Shannon entropy,

regardless of our bit representation. In the worst case, this becomes

Ω(log k). This gives us a strict lower bound on how we can even

represent a category, because we need at least log k bits.

Recall, the Shannon entropy of a random variable X ∈ {x1, ..., xn} is just

H(X) = −
∑n

i=0 p(xi) log p(xi) = −E(log p(xi)).

If we can come close to this, we can’t really do much better.

5

Goal

Given a trained model, normal classification is O(k). This becomes bad

when k is large.

Given k labels, what’s the best classification time we can hope for?

From Kraft’s inequality, we know the minimum time to just compute the

bit representation of a label X is O(H(X)), the Shannon entropy,

regardless of our bit representation. In the worst case, this becomes

Ω(log k). This gives us a strict lower bound on how we can even

represent a category, because we need at least log k bits.

Recall, the Shannon entropy of a random variable X ∈ {x1, ..., xn} is just

H(X) = −
∑n

i=0 p(xi) log p(xi) = −E(log p(xi)).

If we can come close to this, we can’t really do much better.

5

Goal

Given a trained model, normal classification is O(k). This becomes bad

when k is large.

Given k labels, what’s the best classification time we can hope for?

From Kraft’s inequality, we know the minimum time to just compute the

bit representation of a label X is O(H(X)), the Shannon entropy,

regardless of our bit representation. In the worst case, this becomes

Ω(log k). This gives us a strict lower bound on how we can even

represent a category, because we need at least log k bits.

Recall, the Shannon entropy of a random variable X ∈ {x1, ..., xn} is just

H(X) = −
∑n

i=0 p(xi) log p(xi) = −E(log p(xi)).

If we can come close to this, we can’t really do much better.

5

Goal

Given a trained model, normal classification is O(k). This becomes bad

when k is large.

Given k labels, what’s the best classification time we can hope for?

From Kraft’s inequality, we know the minimum time to just compute the

bit representation of a label X is O(H(X)), the Shannon entropy,

regardless of our bit representation. In the worst case, this becomes

Ω(log k). This gives us a strict lower bound on how we can even

represent a category, because we need at least log k bits.

Recall, the Shannon entropy of a random variable X ∈ {x1, ..., xn} is just

H(X) = −
∑n

i=0 p(xi) log p(xi) = −E(log p(xi)).

If we can come close to this, we can’t really do much better.

5

Structural Requirements

So we want:

• O(log k) classification time

• supports an extremely large number of categories

• some types of misclassifications are worse than others (there must

be some notion of distance between categories)

What kind of structure should we use?

(Binary?) Trees

6

Structural Requirements

So we want:

• O(log k) classification time

• supports an extremely large number of categories

• some types of misclassifications are worse than others (there must

be some notion of distance between categories)

What kind of structure should we use?

(Binary?) Trees

6

Structural Requirements

So we want:

• O(log k) classification time

• supports an extremely large number of categories

• some types of misclassifications are worse than others (there must

be some notion of distance between categories)

What kind of structure should we use?

(Binary?) Trees

6

Structural Requirements

So we want:

• O(log k) classification time

• supports an extremely large number of categories

• some types of misclassifications are worse than others (there must

be some notion of distance between categories)

What kind of structure should we use?

(Binary?) Trees

6

Structural Requirements

So we want:

• O(log k) classification time

• supports an extremely large number of categories

• some types of misclassifications are worse than others (there must

be some notion of distance between categories)

What kind of structure should we use?

(Binary?) Trees

6

Structural Requirements

So we want:

• O(log k) classification time

• supports an extremely large number of categories

• some types of misclassifications are worse than others (there must

be some notion of distance between categories)

What kind of structure should we use?

(Binary?) Trees

6

Framework

Overview

We will employ a binary classification tree. Assign each category

(intelligently) to a leaf node. At each node, have a function which

classifies items to either child node.

To classify an item, start at the root, keep calling the classifier at the

current node and traveling that way until we reach a leaf. Run some kind

of standard classification with the categories assigned to each leaf.

For each non-leaf node n, we train a binary classifier hn : X → {−1, 1},
such that hn(x) = 1 if x is sent to the right subtree, and -1 for the left.

When we get to a leaf, take the label with highest training frequency at

that leaf.

7

Overview

We will employ a binary classification tree. Assign each category

(intelligently) to a leaf node. At each node, have a function which

classifies items to either child node.

To classify an item, start at the root, keep calling the classifier at the

current node and traveling that way until we reach a leaf. Run some kind

of standard classification with the categories assigned to each leaf.

For each non-leaf node n, we train a binary classifier hn : X → {−1, 1},
such that hn(x) = 1 if x is sent to the right subtree, and -1 for the left.

When we get to a leaf, take the label with highest training frequency at

that leaf.

7

Overview

We will employ a binary classification tree. Assign each category

(intelligently) to a leaf node. At each node, have a function which

classifies items to either child node.

To classify an item, start at the root, keep calling the classifier at the

current node and traveling that way until we reach a leaf. Run some kind

of standard classification with the categories assigned to each leaf.

For each non-leaf node n, we train a binary classifier hn : X → {−1, 1},
such that hn(x) = 1 if x is sent to the right subtree, and -1 for the left.

When we get to a leaf, take the label with highest training frequency at

that leaf.

7

Overview

We will employ a binary classification tree. Assign each category

(intelligently) to a leaf node. At each node, have a function which

classifies items to either child node.

To classify an item, start at the root, keep calling the classifier at the

current node and traveling that way until we reach a leaf. Run some kind

of standard classification with the categories assigned to each leaf.

For each non-leaf node n, we train a binary classifier hn : X → {−1, 1},
such that hn(x) = 1 if x is sent to the right subtree, and -1 for the left.

When we get to a leaf, take the label with highest training frequency at

that leaf.

7

Objective

Want to maximize 2 quantities

1. Purity: At each node, almost all instances of a given class should

be sent to the same side.

2. Balance: To keep desired classification time, need tree to be

relatively balanced.

We want an objective function that is maximized or minimized when our

tree is both pure and balanced. Shannon entropy does this...

8

Objective

Want to maximize 2 quantities

1. Purity: At each node, almost all instances of a given class should

be sent to the same side.

2. Balance: To keep desired classification time, need tree to be

relatively balanced.

We want an objective function that is maximized or minimized when our

tree is both pure and balanced. Shannon entropy does this...

8

Objective

However, we probably want our model to be able to train online, which

we cannot do with entropy, so we pick something simpler.

We want to minimize the probability that at a given node, examples are

split between the left and right side. We can see this reflected in the

quantity

|P(h(x) > 0)− P(h(x) > 0|i)|

where P(h(x) > 0|i) is the conditional probability over instances x of

class i .

9

Objective

However, we probably want our model to be able to train online, which

we cannot do with entropy, so we pick something simpler.

We want to minimize the probability that at a given node, examples are

split between the left and right side. We can see this reflected in the

quantity

|P(h(x) > 0)− P(h(x) > 0|i)|

where P(h(x) > 0|i) is the conditional probability over instances x of

class i .

9

Objective

However, we probably want our model to be able to train online, which

we cannot do with entropy, so we pick something simpler.

We want to minimize the probability that at a given node, examples are

split between the left and right side. We can see this reflected in the

quantity

0 ≤ |P(h(x) > 0)− P(h(x) > 0|i)| ≤ 1

2

where P(h(x) > 0|i) is the conditional probability over instances x of

class i .

9

Objective

For some node n, define

πi =
number of examples at node n with label i

number of examples at node n

We can then define our objective function as

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)| (1)

10

Objective

For some node n, define

πi =
number of examples at node n with label i

number of examples at node n

We can then define our objective function as

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)| (1)

10

Example

Recall the objective function

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)|

Pure and Balanced

A: 10

B: 10

A: 10

B: 0

A: 0

B: 10

πA = πB = 1
2

J(h) = 2(1
2 |

1
2 − 0|+ 1

2 |
1
2 − 1|) = 1

Less Pure and Less Balanced

A: 8

B: 12

A: 5

B: 8

A: 3

B: 4

πA = 2
5 , πB = 3

5

J(h) = 2(2
5 |

13
20 −

5
8 |+

1
2 |

2
5 −

2
3 |) = 43

150

11

Example

Recall the objective function

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)|

Pure and Balanced

A: 10

B: 10

A: 10

B: 0

A: 0

B: 10

πA = πB = 1
2

J(h) = 2(1
2 |

1
2 − 0|+ 1

2 |
1
2 − 1|) = 1

Less Pure and Less Balanced

A: 8

B: 12

A: 5

B: 8

A: 3

B: 4

πA = 2
5 , πB = 3

5

J(h) = 2(2
5 |

13
20 −

5
8 |+

1
2 |

2
5 −

2
3 |) = 43

150

11

Example

Recall the objective function

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)|

Pure and Balanced

A: 10

B: 10

A: 10

B: 0

A: 0

B: 10

πA = πB = 1
2

J(h) = 2(1
2 |

1
2 − 0|+ 1

2 |
1
2 − 1|) = 1

Less Pure and Less Balanced

A: 8

B: 12

A: 5

B: 8

A: 3

B: 4

πA = 2
5 , πB = 3

5

J(h) = 2(2
5 |

13
20 −

5
8 |+

1
2 |

2
5 −

2
3 |) = 43

150

11

Example

Recall the objective function

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)|

Pure and Balanced

A: 10

B: 10

A: 10

B: 0

A: 0

B: 10

πA = πB = 1
2

J(h) = 2(1
2 |

1
2 − 0|+ 1

2 |
1
2 − 1|) = 1

Less Pure and Less Balanced

A: 8

B: 12

A: 5

B: 8

A: 3

B: 4

πA = 2
5 , πB = 3

5

J(h) = 2(2
5 |

13
20 −

5
8 |+

1
2 |

2
5 −

2
3 |) = 43

150

11

Example

Recall the objective function

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)|

Pure and Balanced

A: 10

B: 10

A: 10

B: 0

A: 0

B: 10

πA = πB = 1
2

J(h) = 2(1
2 |

1
2 − 0|+ 1

2 |
1
2 − 1|) = 1

Less Pure and Less Balanced

A: 8

B: 12

A: 5

B: 8

A: 3

B: 4

πA = 2
5 , πB = 3

5

J(h) = 2(2
5 |

13
20 −

5
8 |+

1
2 |

2
5 −

2
3 |) = 43

150

11

Metrics

Define the following quantities

α :=
k∑

i=1

πi min(P(h(x) > 0|i),P(h(x) < 0|i))

We say the partition function h is δ-pure if α ≤ δ. We say the partition

function h is maximally-pure if α = 0.

β := P(h(x) > 0)

We say the partition function h is c-balanced if c ≤ β ≤ 1− c . We say

the partition function h is maximally-balanced if β = 1
2 .

12

Metrics

Define the following quantities

α :=
k∑

i=1

πi min(P(h(x) > 0|i),P(h(x) < 0|i))

We say the partition function h is δ-pure if α ≤ δ. We say the partition

function h is maximally-pure if α = 0.

β := P(h(x) > 0)

We say the partition function h is c-balanced if c ≤ β ≤ 1− c . We say

the partition function h is maximally-balanced if β = 1
2 .

12

Intermediate Results

Lemma (1)

For any training set {(x , y)} and partition function h

α ≤ min

(
2− J(h)

4β
− β, 1

2

)

Lemma (2)

For any partition function h

0 ≤ J(h) ≤ 1

Specifically, J(h) = 1 when h is maximally-pure and

maximally-balanced.

13

Intermediate Results

Lemma (1)

For any training set {(x , y)} and partition function h

α ≤ min

(
2− J(h)

4β
− β, 1

2

)

Lemma (2)

For any partition function h

0 ≤ J(h) ≤ 1

Specifically, J(h) = 1 when h is maximally-pure and

maximally-balanced.

13

Global Properties

We now have some tools to measure the quality of the tree at each node,

but we still need to train globally. First need to define our tree T .

• L - the set of leaf nodes of T
• t - number of internal (non-leaf) nodes of T
• X - the input space

• P - the true distribution over X from which our training examples x

are drawn

• πi,l - the conditional probability over x ∼ P in class i reaching leaf l

• wl - the weight of leaf l , the probability over x ∼ P of reaching leaf

l .
∑

l∈L wl = 1

14

Quality and Entropy

• πi,l - the conditional probability over x ∼ P in class i reaching leaf l

• wl - the weight of leaf l , the probability over x ∼ P of reaching leaf

l .
∑

l∈L wl = 1

We use the quality of the tree as a measure of the overall balance and

purity of the nodes. We define it as the sum of the local entropies at

each node. The quality of the tree T is

Gt :=
∑
l∈L

wl

k∑
i=1

πl,i ln

(
1

πl,i

)

15

LOMTree Algorithm

J(h) = 2
k∑

i=1

πi |P(hn(x) > 0)− P(hn(x) > 0|i)|

We can reformulate our objective function as an expectation value

J(h) = 2Ei [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|i)]|]

Now, to update our model online, we update the expectation value of

each node as we encounter new training examples.

As the number of examples reaching each leaf nodes grows above some

threshold, we add children to the node and assign the examples to these

children. We stop when the number of internal nodes reaches some

threshold T .

16

Swapping

As the tree gets unbalanced, we are likely to lose the desired runtime.

However, we can perform swaps to nodes that meet the condition

Cj − max
0≤i≤k

lj(i) > RS(Cr + 1)

where Cj is the size of the smallest leaf in the subtree rooted at j , lj(i) is

the number of points of class i reaching j , and RS is the ”swap

resistance” we choose. This ensures nodes with high purity are not split

in an attempt to attain more balance. .

We then retrain those two branches of the tree.

17

Correctness

Convergence and correctness aren’t necessarily guaranteed, unless we

make some ”Weak Hypothesis Assumption” about our data and our tree.

Is basically a formalization of the condition that for any distribution P
over X at each node m, there is some hm that brings our objective

function above some threshold.

Under this assumption, we can use our ”Weak Learning Framework”, and

ensure that our tree will satisfy both ”weak purity” and be ”weakly

balanced”. These proofs are extremely technical and not instructive, but

can be found in the supplemental section of the paper on LOMTree

linked in the references.

18

Correctness

Convergence and correctness aren’t necessarily guaranteed, unless we

make some ”Weak Hypothesis Assumption” about our data and our tree.

Is basically a formalization of the condition that for any distribution P
over X at each node m, there is some hm that brings our objective

function above some threshold.

Under this assumption, we can use our ”Weak Learning Framework”, and

ensure that our tree will satisfy both ”weak purity” and be ”weakly

balanced”. These proofs are extremely technical and not instructive, but

can be found in the supplemental section of the paper on LOMTree

linked in the references.

18

Pseudocode

This works under the weak learning hypothesis that we can always find a

good partition function at each node.

19

Hierarchical Document

Categorization with Support

Vector Machines

Motivation

Previous algorithm looked at a binary tree structure for laying out classes.

What if we want to represent classes in some arbitrary latice?

We need to encode some sort of relationship between classes.

20

SVMs for Classification

SVMs are robust classifiers.

Standard SVM is a binary linear classifier that maximizes minimum

distance from a separating boundary.

Can be hard margin or soft margin

Use different kernels by mapping inputs into a high dimensional space

(kernel trick)

21

SVMs for Classification

SVMs are robust classifiers.

Standard SVM is a binary linear classifier that maximizes minimum

distance from a separating boundary.

Can be hard margin or soft margin

Use different kernels by mapping inputs into a high dimensional space

(kernel trick)
21

Hinge Loss

For soft margin SVM, use hinge loss function:

max(0, 1− yi (wxi − b))

Consider labels yi that are ±1. Impose a small penalty for correct

classification with small margin (wxi − b < 1), larger penalty for

misclassification.

22

Optimization Problem

Training objective: minimize hinge loss over training set

Minimize [
1

n

n∑
i=1

max(0, 1− yi (wxi − b))

]
+ λ||w||2

Regularization term allows trade off between increasing margin size and

ensuring accurate classification

23

Optimization Formulation

For each i ∈ 1, ..., n, let γi = max(0, 1− yi (wxi − b)).

Note that γi is smallest non-negative number such that

yi (wxi − b) > 1− γi

Thus, we can formulate this optimization as the following primal

problem: minimize

1

n

n∑
i=1

γi + λ||w||2

subject to yi (wxi − b)) ≥ 1− γi
and γi ≥ 0 for all i.

We can also convert this into its Lagrangian Dual, that can be solved

efficiently using quadratic programming.

24

Multiclass Classification

We extend Binary SVMs to discriminate between more than one class.

Assign some scalar label to each feature.

We use a flat category structure, and define a set of binary classifiers that

individually distinguish each class from all the others.

25

Multiclass Classification

We extend Binary SVMs to discriminate between more than one class.

Assign some scalar label to each feature.

We use a flat category structure, and define a set of binary classifiers that

individually distinguish each class from all the others.

25

Multi-class SVM

We use a separate weight vector for each of the q possible categories.

For classification, we want to find the category y that maximizes the

inner product of 〈wy , xi 〉 for each training instance (xi, y) that was

assigned class y in our training set.

Our goal is to classify any data point (xi, yi)
n
i=1 with the maximum

margin as one of the q classes.

26

Multi-class SVM

We use a separate weight vector for each of the q possible categories.

For classification, we want to find the category y that maximizes the

inner product of 〈wy , xi 〉 for each training instance (xi, y) that was

assigned class y in our training set.

Our goal is to classify any data point (xi, yi)
n
i=1 with the maximum

margin as one of the q classes.

26

Multi-class SVM

We use a separate weight vector for each of the q possible categories.

For classification, we want to find the category y that maximizes the

inner product of 〈wy , xi 〉 for each training instance (xi, y) that was

assigned class y in our training set.

Our goal is to classify any data point (xi, yi)
n
i=1 with the maximum

margin as one of the q classes.

26

Multi-class SVM Formulation

Combine the wy into stacked weight vector w = (w1, ...wq)

We then define the linear discriminant function F (x, y ; w) = 〈wy, x〉 and

the classification function: f (x; w) = argmaxy∈Y F (x, y ; w).

Winner take all: each example is assigned the class that scores the

highest under the discriminant function

27

Multi-class SVM Formulation

The multi-class margin is given by γi (w) = F (xi, yi)−maxy 6=yiF (xi, y)

with respect to a given weight vector w.

We need a positive margin for correct classification, so we apply the

max-margin principle for the optimal weight vector to maximize the

margin defined above.

w∗ = argmax
w:||w||=1

(
min

1≤i≤n
γi (w)

)

28

Multi-class SVM Formulation

min
w ,ζ

1

2
||w||2 + C

n∑
i=1

ζi

such that γi (w) ≥ 1− ζi and ζi ≥ 0 where

γi (w) = F (xi, yi)−max
y 6=yi

F (xi, y)

and F (x, y ; w) = 〈wy, x〉

Nonlinear constraints can be decomposed to q − 1 linear constraints as

follows for y 6= yi :

〈wyi −wy , xi〉 ≥ 1− ζi

Convex quadratic program with nq constraints.

29

Multi-class SVM Formulation

min
w ,ζ

1

2
||w||2 + C

n∑
i=1

ζi

such that γi (w) ≥ 1− ζi and ζi ≥ 0 where

γi (w) = F (xi, yi)−max
y 6=yi

F (xi, y)

and F (x, y ; w) = 〈wy, x〉

Nonlinear constraints can be decomposed to q − 1 linear constraints as

follows for y 6= yi :

〈wyi −wy , xi〉 ≥ 1− ζi

Convex quadratic program with nq constraints.

29

Representing Class Structure

Using multiclass SVM formulation now we can now consider problems

with many possible classes

We still cannot encode relationship between classes...

• Each class so far is just a scalar value

• Need to add some notion of structure to indicate class relationships

We arrange our classes in an s node lattice, where each node can

represent a class or a relationship between classes.

30

Representing Class Structure

Using multiclass SVM formulation now we can now consider problems

with many possible classes

We still cannot encode relationship between classes...

• Each class so far is just a scalar value

• Need to add some notion of structure to indicate class relationships

We arrange our classes in an s node lattice, where each node can

represent a class or a relationship between classes.

30

Representing Class Structure

Using multiclass SVM formulation now we can now consider problems

with many possible classes

We still cannot encode relationship between classes...

• Each class so far is just a scalar value

• Need to add some notion of structure to indicate class relationships

We arrange our classes in an s node lattice, where each node can

represent a class or a relationship between classes.

30

Class Representations

What if we are trying to classify something within a taxonomic structure?

We first need to represent the relationships between classes.

Represent each class with attribute vector Λ(y)

We can then define more general discriminant function:

F (x, y ; w) = 〈wy, x〉 → F (x, y ; w) = 〈w, φ(x, y)〉

where φ(x , y) = Λ(y)⊗ x.

31

Structured Example

32

Encoding Class Relationships

We can write out φ(x , y) for F (x, y ; w) = 〈w, φ(x, y)〉 for s attribute

vectors as:

φ(x, y) =

λ1 · x
λ2 · x

...

λs · x

Reduces to multiclass SVM formulation if λr (y) = δry because then you

just get

〈w, φ(x, y)〉 = 〈wy, x〉

φ(x, y) =

...

0

x

0
...

33

Encoding Class Relationships

We can write out φ(x , y) for F (x, y ; w) = 〈w, φ(x, y)〉 for s attribute

vectors as:

φ(x, y) =

λ1 · x
λ2 · x

...

λs · x

Reduces to multiclass SVM formulation if λr (y) = δry because then you

just get

〈w, φ(x, y)〉 = 〈wy, x〉

φ(x, y) =

...

0

x

0
...

33

New Quadratic Program Formulation

Can rewrite F (x, y ; w) = 〈w, φ(x, y)〉 as F (x, y ; w) =
∑s

r=1 λr (y) 〈wr, x〉
by linearity over our s nodes.

Thus, we can formulate quadratic program as before with linear

constraints:

〈δφi (y),w〉 ≥ 1− ζi (∀i , y 6= yi)

ζi ≥ 0 (∀i)
δφi (y) ≡ φ(xi, yi)− φ(xi, y)

34

Dual Problem

This yields a dual problem given as

α∗ ≡ argmax
α

Θ(α)

s.t. αiy ≥ 0,
∑
y 6=yi

αiy < C

which can be solved with quadratic programming.

35

Defining Class Relationships via Taxonomy

Define taxonomy as some tree with leaves corresponding to categories.

(Interior nodes can also represent categories by adding a leaf to them.)

Denote nodes by z ∈ Z = {z1, ...zp} with p ≥ q where yk = zk for

k = 1, ...q for q total categories.

Define class attributes for non-negative weights vz ≥ 0 as follows:

λz(y) =

{
vz if z ≺ y

0 otherwise

where z ≺ y means that y is a child of z .

36

Defining Class Relationships via Taxonomy

We could set vz = 1 to make λz an indicator function. We could also set

vz to be constant for any nodes at same depth in the tree.

Defining class attributes through common predecessors leads to a

decomposition of the discriminant function into contributions from the

nodes along the path from the root to a specific leaf.

This sort of taxonomy based class structure gives the following

discriminant function:

F (x, y ; w) =
∑
z:z≺y

λz(y) 〈wz, x〉

37

Defining The Loss Function

One issue with the current approach is it is still based on the standard

SVM hinge loss. Hinge loss provides an upper bound on the empirical

misclassification rate, but it treats all classification swaps equivalently.

But, when classifying in a taxonomy structure, not all mistakes are the

same...

38

Defining The Loss Function

We need some loss function that penalizes local swaps less than swaps

with far away nodes.

Therefore, we aim to define some function ∆(y , ŷ) to denote the loss

between the true class y and the predicted class ŷ .

39

Defining Loss Function

Now we need to...

• Define a meaningful loss function between categories in a

taxonomy structure

• Modify SVM formulation to directly minimize desired loss.

40

Loss Function for Document Filtering

Consider a scenario where a document is forwarded to users based on its

position in the tree. Users could ”subscribe” to a topic by specifying

some node z of interest.

Let fz be the ”subscription load” at node z , given by the number of users

that access a document categorized at or below node z in the tree.

41

Loss Function for Document Filtering

Total loss for node z is the sum of:

• cz : the cost of classifying document under node z when it

SHOULD NOT be

• c̄z : the cost of not classifying document under node z when it

SHOULD be

42

Loss Function for Document Filtering

Now we can weight each of the two costs for each node z by the

subscription load fz for that node to get a total loss as follows:

∆(y , ŷ) =
∑

z:z≺y ,z 6≺ŷ

fzcz +
∑

z:z 6≺y ,z≺ŷ

fz c̄z

Thus, we see that for a tree, the loss involves the costs for nodes on the

path to the first common predecessor in the tree.

43

Defining Loss Function

Now we need to...

• Define a meaningful loss function between categories in a taxonomy

structure

• Modify SVM formulation to directly minimize desired loss.

44

Adapted SVM Formulation

We want to generalize the vanilla SVM solution to accommodate the

changed function ∆(y , ŷ).

We can just scale penalties for margin violations proportional to loss and

use the same formulation

Standard Multi-class

min
w ,ζ

1

2
||w||2 + C

n∑
i=1

ζi

s.t. γi (w) ≥ 1− ζi , ζi ≥ 0,∀i

Adapted Multi-class

min
w ,ζ

1

2
||w||2 + C

n∑
i=1

ζi

s.t. 〈w, δψi (y)〉 ≥ 1− ζi
∆(yi , y)

, (∀i , y 6= yi)

ζi ≥ 0, (∀i)

45

Algorithm

We can similarly modify the dual Quadratic Problem to accommodate

our new weights to get

Standard Multi-class

α∗ ≡ argmax
α

Θ(α)

s.t. αiy ≥ 0,
∑
y 6=yi

αiy < C

Adapted Multi-class

α∗ ≡ argmax
α

Θ(α)

s.t.
∑
y 6=yi

αiy

∆(yi , y)
≤ C , (∀i , y 6= yi)

αiy ≥ 0, (∀i)

However, the dual problem grows as O(nq) now, where q is the total

number of classes, instead of as O(n) as in the standard formulation. We

can alleviate some of the extra training time by noting that some

constraints factor and by exploiting sparsity.

46

Independence Condition

Note that for αiy and αjy ′ from different training instances i and j are

not coupled at all in our optimization. Therefore, we can hold most dual

variables α constant and perform subspace optimization. This gives us a

linear number of subproblems, each of which we can solve sublinearly

compared the the original large QP.

47

Variable Selection

We can also use the fact that most αiy will be 0, because α will be sparse

since we expect a very small amount of active constraints. We can exploit

this fact by only choosing certain variables to use in our solution. The

authors use a variable selection approach that capitalizes on this fact, but

we skip the derivations because they provide little insight or clarity.

48

LOMtree Experimental Results

LOMtree Algorithm Experimental Results

Hypotheses on LOMTree Algorithm:

1. Achieves logarithmic time computation in practice

2. Competitive with or better than all other logarithmic train/test time

algorithms for multi-class classification

3. LOMTree algorithm has statistical performance close to standard

O(k) approaches

Address these hypotheses by testing on benchmark multiclass datasets.

49

LOMtree Algorithm Experimental Results

All sets divided into 90 percent training and 10 percent testing. Also, 10

percent of training set used as validation set.

Dataset information shown below:

50

LOMtree Algorithm Experimental Results

Compared LOMTree with:

• Balanced random tree of logarithmic depth (Rtree) (O(logk))

• Filter Tree (O(logk))

• One Against All Classifier (O(k))

All methods were implemented in some fixed learning system and trained

by online gradient descent with a variety of step sizes.

For each method, ran training with up to 20 passes through the data and

selected the best step size/number of passes pair for each model.

51

LOMtree Algorithm Experimental Results

We see LOMTree does indeed achieve logarithmic time computation in

practice (Hypothesis 1) since LOMTree performs much better than OAA

since LOMTree only builds close to logarithmic depth trees

Improvement in training time only increases with increase in number of

classes in problem as seen above

Improvement in test time also increases with increase in number of

classes in problem.

Per example test time for Aloi, ImageNet, and ODP are respectively 5.5,

403.8, and 4038.5 times faster than OAA.

52

LOMtree Algorithm Experimental Results

Test time of LOMTree over OAA shown again below. Note that because

of the log scale its actually an exponential speedup, as expected.

53

LOMtree Algorithm Experimental Results

Test error shown for logarithmic train/test time algorithms.

Clearly the LOMtree algorithm is generally competitive with or better

than all other logarithmic train/test time algorithms for multiclass

classification (Hypothesis 2)

54

LOMtree Algorithm Experimental Results

RTree imposes random label partition so its error is worse than LOMTree

(learns partitions from data)

LOMtree at least slightly better, and sometimes much better than all

other logarithmic time algorithms on all sets other than Sector

Unclear if LOMTree has statistic performance comparable to O(k)

approaches since still good amount higher error than OAA

55

Hierarchical Document

Categorization Application

The Problem

Extremely large database of documents with a specific categorization

Features generated from each document by using title and header

information + tokenizing body of document

Want to correctly classify each document to a specific

categorization...getting categories wrong closer to root in the taxonomy

tree is expensive

56

Data

We have 2 data sets: Synthetic and WIPO-alpha

Synthetic:

• Generated tree structure with constant depth, chose fixed number of

features

• Random weight vector generated for each node, following iid

multinomial distributions

• Variance fixed across levels, decreases with increasing depth

WIPO-alpha

• patent documents with a 4 level hierarchy

• Sections, classes, subclasses, groups

• Eg:

57

Approach

Choose loss function

∆(y , ŷ) =

 ∑
z:z≺y ,z 6≺ŷ

1

2

+

 ∑
z:z 6≺y ,z≺ŷ

1

2

For computational convenience, and easy comparision to standard SVM,

set vz =
√

1
depth = const so that 〈Λ(y),Λ(y)〉 = 1 and therefore:

〈ψ(x, y), ψ(x, y)〉 = 〈Λ(y),Λ(y)〉 〈x, x〉 = 〈x, x〉

Linear kernel used

All data normalized in pre-processing

Testing accuracy determined using cross-validation and averaging

58

Evaluation Measures

• Accuracy: fraction of documents classified perfectly

• Precision:

prec(f) =
1

n

n∑
i=1

1

|{y : F (xi, y) ≥ F (xi, yi)}|

• Taxonomy Loss: ∆-loss(f) = 1
n

∑n
i=1 ∆(yi , f (xi))

• Parent accuracy: likelihood of assigning a sibling of the correct

lowest classification.

59

Performance - Synthetic Data

• 100 training examples, 20 features

• Doesn’t feel that extreme though...

60

Performance - WIPO

61

Conclusions

• Hierarchical SVM outperforms flat SVM in general

• Especially true when number of examples low

• Learned solutions tend to be sparse, less than 1 percent of alpha

variables are nonzero

62

References

1. https://info.cis.uab.edu/zhang/Spam-mining-papers/

Hierarchical.Data.Classification.with.Support.Vector.

Machines.pdf

2. http://www.cs.utexas.edu/~inderjit/public_papers/

pdsparse_icml16.pdf

3. http://papers.nips.cc/paper/

5937-logarithmic-time-online-multiclass-prediction.pdf

63

https://info.cis.uab.edu/zhang/Spam-mining-papers/Hierarchical.Data.Classification.with.Support.Vector.Machines.pdf
https://info.cis.uab.edu/zhang/Spam-mining-papers/Hierarchical.Data.Classification.with.Support.Vector.Machines.pdf
https://info.cis.uab.edu/zhang/Spam-mining-papers/Hierarchical.Data.Classification.with.Support.Vector.Machines.pdf
http://www.cs.utexas.edu/~inderjit/public_papers/pdsparse_icml16.pdf
http://www.cs.utexas.edu/~inderjit/public_papers/pdsparse_icml16.pdf
http://papers.nips.cc/paper/5937-logarithmic-time-online-multiclass-prediction.pdf
http://papers.nips.cc/paper/5937-logarithmic-time-online-multiclass-prediction.pdf

Questions?

64

	Motivation
	Framework
	Hierarchical Document Categorization with Support Vector Machines
	LOMtree Experimental Results
	Hierarchical Document Categorization Application

