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Brief review of perceptron
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Error-Driven Updating: The perceptron algorithm
The perceptron is a classic learning algorithm for the neural model of learning. 
It is one of the most fundamental algorithm. It has two main characteristics:

It is online. Instead of considering the entire data set at the same time, it only 
ever looks at one example. It processes that example and then goes on to the 
next one.

It is error driven. If there is no error, it doesn’t bother updating its parameter.
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Structured Perceptron
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Prediction Problems
Input x Predict y Prediction Type

A book review
Oh, man I love this book!
This book is so boring...

Is it positive?
Yes
No 

Binary prediction
(2 choices)

A tweet
On the way to the park!
正在去公园

Its language
English
Chinese

Multi-class prediction
(several choices)

A sentence
I read a book.

Its syntactic tags Structured prediction
(millions of choices)
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Applications of Structured Perceptron
1. POS Tagging with HMMs

- Collins “Discriminative Training Methods for Hidden Markov Models: Theory and Experiments 
with Perceptron Algorithms” ACL02

2. Parsing
- Huang+ “Forest Reranking: Discriminative Parsing with Non-Local Features” ACL08

3. Machine Translation
- Liang+ “An End-to-End Discriminative Approach to Machine Translation” ACL06

4. Vocabulary speech recognition
- Roark+ “Discriminative Language Modeling with Conditional Random Fields and the Perceptron 

Algorithm” ACL04

8



Structured perceptron algorithm
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Feature representation
What is feature representation?

A feature vector is just a vector that contains information describing an 
object's important characteristics.

Some example of feature representation in different areas:

In character recognition, features may include histograms counting the number of black pixels along 
horizontal and vertical directions, number of internal holes, stroke detection and many others.

In spam detection algorithms, features may include the presence or absence of certain email 
headers, the email structure, the language, the frequency of specific terms, the grammatical 
correctness of the text.
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Feature representation
In POS Tagging problem, general ways to create a feature:

Are capital letters nouns?

Are words that end with -ed verbs？

Can easily try many different ideas!
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Some notations
A sequence of words, short-hand for

A sequence of tags, short-hand for

 A history, the context in which a tagging decision is made.

Usually, a 4-tuple

A feature mapping function. Size is

Maps a history-tag pair to a d-dimensional feature vector.

Each component                    could be an arbitrary function of h 
and t. 12



Some notations
A feature-vector representation

For example, one such feature might be 
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Some notations

A function from                       fd     pairs to d-dimensional feature 
vectors. 

Refer as a “global” representation, in contrast to      as a “local” 
representation. 
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An example of feature vector - POS Tagging

Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and 
Structured Output Spaces, ICML 2004
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x:          The dog ate my homework.

y : <S>   D     N  V  D        N <E> 



An example of feature vector - Parsing

Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and 
Structured Output Spaces, ICML 2004
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Some notations

A function which enumerates a set of candidates for an input 
x. Given a set of possible tags T , we define 

A d-dimensional parameter vector
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Recap: Structured perceptron algorithm
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Recap: Decoding - Viterbi Algorithm in HMM

What is decoding problem?

Given a sequence of symbols (your observations) and a model, what is the 
most likely sequence of states that produced the sequence.
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An example of Viterbi Algorithm
First, calculate transition from <S> and emission of the first word for every 
POS.
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An example of Viterbi Algorithm
For middle words, calculate the maximum score for all possible previous POS 
tags.
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Viterbi algorithm with features
Same as probabilities, use feature weights
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Viterbi algorithm with features
Can add additional features.
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Discriminative Training Methods for Hidden Markov Models: 
Theory and Experiments with Perceptron Algorithms

Michael Collins
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Outline
1. A motivating example
2. Algorithm for tagging
3. General Algorithm

a. Proof for Convergences

4. Experiment result
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Part of Speech (POS) Tagging
1. Maximum-entropy (ME) models

a. Advantages: flexible in the features that can be incorporated in the model.

b. Disadvantages:  inference problem for such models is intractable

2. Conditional Random Fields (CRFs)
a. Better than ME

3. Structured Perceptron
a. 11.9% relative reduction in error for POS tagging compared with ME
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A Motivating Example 
● Trigram HMM taggers (Second order HMMs)
● Parameters   αx,y,z - trigram <x, y, z>, αt,w - tag/word pair <t, w>
● Common approach(maximum-likelihood):

The score for a tag sequence t[1:n] with a word sequence w[1:n]

Using Viterbi algorithm to find the highest scoring.

27



A Motivating Example 
● An alternative to maximum-likelihood parameter estimates

○ Choose a T defining the number of iterations over the training set.

○ Initially set all parameters αx,y,z  and αt,w to be zero.
○ In each iteration, use Viterbi to find best tagged sequence for w[1:n] to get z[1:n]
○ Update parameters:

■ <x, y, z> c1 times in t[1:n], c2 times in z[1:n]

■ αx,y,z  = αx,y,z + c1 - c2

■ <t, w> c1 times in t[1:n], c2 times in z[1:n]

■ αt,w  = αt,w + c1 - c2
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A Motivating Example  
● An example

○ Training data : 
■ the/D  man/N  saw/V  the/D  dog/N

○ The highest scoring tag sequence z[1:n]:
■ the/D  man/N  saw/N  the/D  dog/N

○ Update parameters

■ αD,N,V, αN,V,D, αV,D,N, αV,saw + 1

■ αD,N,N, αN,N,D, αN,D,N, αN,saw - 1
■ If tag sequence is correct -- no change.
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Generalize the algorithm to tagged sequences
● Recap:  feature vector representations

○ maps a history-tag pairs to a d-dimensional feature vector

Each components φ is an arbitrary function of (h, t), eg: h: <t-1, t-2, w[1:n], i>
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General Representation
● Maximum-Entropy Taggers                         New estimate method

○ Conditional probability:                                            The “score” of a tagged sequence

Log probability:
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The training algorithm for tagging
● Inputs: A training set of tagged sentences
● Initialization: Set parameter vector
● For t = 1 … T, i = 1 ... n:

○     
○ If                              ：

■                          
■

● Output: Parameter vector
● Refinement: “averaged parameters” method
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General Algorithm
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Assumption for Algorithm for taggers
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Convergence for separable data 

Independent of the number of candidates 
for each example,
Depending only on the separation of the 
training data
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Proof of Theorem 1 
        ：the weights before k’th mistake is made.

(induction)
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Convergence for inseparable data
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Proof of Theorem 2

(                                          )  >=   

Using Theorem 1:
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Generalization to New Test Examples
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Experiment Results

cc = feature count cut-offs set 
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Conclusion
● Described new structured perceptron algorithm for tagging.
● The generic algorithm and the theorems describing its convergence could 

apply to several other models in the NLP.
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Distributed Training Strategies for the Structured 
Perceptron

Ryan McDonald Keith Hall Gideon Mann
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Outline
1. Introduction of distributed training strategies for the structured 

perceptron
2. Background (Related Work and Structured perceptron recap)
3. Iterative Parameter mixing distributed structured perceptron
4. Experiments and results

a. Serial (All Data)
b. Serial (Sub Sampling)
c. Parallel (Parameter Mix)
d. Parallel (Iterative Parameter Mix)
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Limitation of Structured Perceptron
● Increasing size of available training sets

● Training complexity is proportional to inference, which is frequently non- 
linear in sequence length, even with strong structural independence 
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Distributed Training Strategies
● Iterative parameter mixing

○ have similar convergence properties to the standard perceptron algorithm
○ find a separating hyperplane if the training set is separable
○ reduce training times significantly
○ produce models with comparable (or superior) accuracies to those trained serially on all 

the data
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Related Work
● Sub-gradient distributed training: asynchronous optimization via gradient 

descent
○ Require shared memory
○ Less suitable to the more common cluster computing environment

● Other structured prediction classifiers: like CRF
○ Conditional random fields (CRFs)
○ Distributed through the gradient
○ Require computation of a partition, expensive and sometimes intractable
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Structured Perceptron Recap
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Supporting Theorem 1 Recap

Theorem 1 implies that if T is separable then
● The perceptron will converge in a finite amount of time
● It will produce a w that separates T.
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Distributed Training Strategies for the Perceptron
● Parameter Mixing

● Iterative Parameter Mixing
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Parameter Mixing
● Algorithm
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Parameter Mixing
● Parameter Mixing Map-Reduce framework

○ Map stage - Trains the individual models in parallel

○ Reduce stage - Mixes their parameters

51



Parameter Mixing
● Limitations

○ their analysis requires a stability bound on the parameters of a regularized maximum 
entropy model, which is not known to hold for the perceptron.
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Supporting Theorem 2
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Theorem 2 Proof
Consider a binary classification setting where Υ = {0, 1} and Τ has 4 instance. 

Τ1 = {(x1,1, y1,1),(x1,2, y1,2)}  Τ2 = {(x2,1, y2,1),(x2,2, y2,2)}
y1,1 = y1,2 = 0  y2,1 = y2,2 = 1

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]
f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]
f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]
f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]
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Theorem 2 Proof cont.
Assuming label is tie-breaking, parameter mixing might returns:
w1=[1 1 0 -1 -1 0] w2=[0 1 1 0 -1 -1]

If both μ1, μ2 are non-zero: all examples will be classified as 0

If μ1=1 and μ2=0: (x2,2, y2,2) will be incorrectly classified as 0

If μ1=0 and μ2=1: (x1,2, y1,2) will be incorrectly classified as 0

There is a separating vector w = [-1 2 -1 1 -2 1] !!!
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Iterative Parameter Mixing
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Iterative Parameter Mixing
● Iterative Parameter Mixing Map-reduce

○ map computes the parameters for each shard for one epoch and
○ reduce mixes and re-sends them

● The disadvantage of iterative parameter mixing, relative to simple 
parameter mixing, is that the amount of information sent across the 
network will increase.
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Supporting Theorem 3
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Theorem 3 Proof
w(i,n) the weight vector for the ith shard after the nth epoch of the main loop

w([i,n]-k) the weight vector that existed on shard i in the nth epoch k errors 
before w(i,n)

w(avg,n)  the mixed vector from the weight vectors returned after the nth epoch
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Theorem 3 Proof cont.
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Theorem 3 Proof cont.
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Theorem 3 Proof cont.
Base Case Inductive Hypotheses
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Theorem 3 Proof cont.
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Theorem 3 Proof cont.
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Analysis
If we set each μi,n to be the uniform mixture, μi, n= 1/S, theorem 3 guarantees 
convergence to a separating hyperplane.

If                                  then the previous weight vector already separated the 
data.

Otherwise                                   is bounded and cannot increase indefinitely.
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Analysis
Non-distributed: 

Distributed: Setting μi,n= ki, n/kn where kn = ∑iki,n
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Experiments
● Serial (All Data)

○ Trained serially on all the available data

● Serial (Sub Sampling)
○ Shard the data, select randomly and train serially

● Parallel (Parameter Mix)
○ Parameter Mixing distributed strategy

● Parallel (Iterative Parameter Mix)
○ Iterative Parameter Mixing distributed strategy
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Experiment 1 
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Experiment 2
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Convergence Properties
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Conclusions
● The analysis shows that an iterative parameter mixing strategy is both 

guaranteed to separate the data (if possible) and significantly reduces the 
time required to train high accuracy classifiers.

● There is a trade-off between increasing training times through distributed 
computation and slower convergence relative to the number of shards.
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