Structured Perceptron

= Ye Qiu, Xinghui Lu, Yue LU,
Ruofei Shen

Outline

1. Brief review of perceptron

2. Structured Perceptron

3. Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms

4. Distributed Training Strategies for the Structured Perceptron

Brief review of perceptron

Perceptron Learning Algorithm

e« wl=0,bl=0 h(x|w) = sign(w"x - b)
* Fort=1...
— Receive example (x,y) MEIRESEE i
—If h(x|wt) =y > {(xi’yi)}i=1
o [wt*l bt*1] = [wt bt] 2 E{"'l’_l}
— Else

Go through training set
in arbitrary order

e ht*l = bt + y (e.g., randomly)

Error-Driven Updating: The perceptron algorithm

The perceptron is a classic learning algorithm for the neural model of learning.
It is one of the most fundamental algorithm. It has two main characteristics:

It is online. Instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes on to the
next one.

It is error driven. If there is no error, it doesn't bother updating its parameter.

Structured Perceptron

Prediction Problems

Input x Predict y Prediction Type

A book review Is it positive? Binary prediction

Oh, man | love this book! Yes (2 choices)

This book is so boring... No

A tweet Its language Multi-class prediction
On the way to the park! English (several choices)
EEEAE Chinese

A sentence
| read a book.

Its syntactic tag_

/ R

VBD DET NN
I read a book

Structured prediction
(millions of choices)

Applications of Structured Perceptron

1. POS Tagging with HMMs
- Collins “Discriminative Training Methods for Hidden Markov Models: Theory and Experiments
with Perceptron Algorithms” ACL02
2. Parsing

- Huang+ “Forest Reranking: Discriminative Parsing with Non-Local Features” ACLO8

3. Machine Translation
- Liang+ “An End-to-End Discriminative Approach to Machine Translation” ACLO6

4. Vocabulary speech recognition
- Roark+ “Discriminative Language Modeling with Conditional Random Fields and the Perceptron
Algorithm” ACLO4

Structured perceptron algorithm

Inputs: Training examples (z;, y;)
Initialization: Set @ = 0
Algorithm:
BEort=l..:,t=1l..:"
Calculate z; = arg max,cgeN(z;) ®(zi, 2) - @
If(z; # yi) then & = a + ®(xi,y:) — (x4, 2:i)
Output: Parameters a

Feature representation

What is feature representation?

A feature vector is just a vector that contains information describing an
object's important characteristics.

Some example of feature representation in different areas:

In character recognition, features may include histograms counting the number of black pixels along
horizontal and vertical directions, number of internal holes, stroke detection and many others.

In spam detection algorithms, features may include the presence or absence of certain email

headers, the email structure, the language, the frequency of specific terms, the grammatical
correctness of the text.

10

https://en.wikipedia.org/wiki/Character_recognition
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Spam_(electronic)

Feature representation

In POS Tagging problem, general ways to create a feature:
Are capital letters nouns?
Are words that end with -ed verbs ?

Can easily try many different ideas!

11

Some notations

’w[l;n] A sequence of words, short-hand for (w1, wa ... wy)
t[1:n] A sequence of tags, short-hand for [t1,t2. .. ty]
h A history, the context in which a tagging decision is made.
| Usually, a 4-tuple (t_1,% 2, w[1.p), 1)
¢) A feature mapping function. Sizeis H x T — R
Maps a history-tag pair to a d-dimensional feature vector.

Each component qﬁs(h, t) could be an arbitrary function of h
and t. 12

Some notations

A feature-vector representation

¢:HxT — R?

For example, one such feature might be

b1001(h,t) =1 if (t_2,t_1,t) = (D, N, V)

O otherwise

13

Some notations

A function from (w[
vectors.

1:n)> t[l:n]) pairs to d-dimensional feature

(I)(Wl1:n]» 1n] Z¢s hz-;tz

Refer as a “global” representation, in contrast to ¢) as a “local”
representation.

14

An example of feature vector - POS Tagging

S— D
S—N
D—-N

N-—-V

vV =D

N - <E>

y:<S> D N V D N <E>

X: The dog ate my homework.

— == =N O

N — Dog
N — Cat
VvV —ate

Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and

Structured Output Spaces, ICML 2004 .

An example of feature vector - Parsing

y: S
/\
NP VP
|
N \Y% VP
| 7 ey
X. Boeing is v 24
I /\
located P NP
| |
in N

Seattle

Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and

Structured Output Spaces, ICML 2004

— == =N O

S — NP VP
S— VP
NP — N

VP -V VP

VP — V PP

PP — P NP

N — Boeing
N — Airbus
V —is
V — located
P —in
N — Seattle

Inputs: Training examples (z;, y;)
Initialization: Set a =0

®
Algorithm:
Some notations
Calculate z; = arg max,dGgeN(z,)| ®(zi, 2) - @
If(z; # yi) then a =a + @!xi,yi! — (x4, 2i)
Output: Parameters &

A function which enumerates a set of candidates for an input
X. Given a set of possible tags T, we define

GEN(w w1 n]) T"

GEN(zx

O A d-dimensional parameter vector

Recap: Structured perceptron algorithm

Inputs: Training examples (z;,y;)
Initialization: Set @ = 0
Algorithm:
BEort=l..:F;t=)l..:0
Calculate z; =larg max,cgeN(e,) ®(xi, 2) - & |
If(z; # yi) then a = a + ®(xi,yi) — P(xi, 2i)
Output: Parameters a

18

Recap: Decoding - Viterbi Algorithm in HMM

568 ¢

What is decoding problem?

Given a sequence of symbols (your observations) and a model, what is the
most likely sequence of states that produced the sequence.

argmaXP(y | x)

y

19

An example of Viterbi Algorithm

First, calculate transition from <S> and emission of the first word for every
POS.
I

\0:<S>H 1:NN | best_score[“1 NN"] = -log P_(NN|<S>) + -log P (I | NN)

@ best_score[*1 JJ"] = -log P_(3J|<S>) + -log P_(I | 3J)
* 1:VVB | best_score[*1 VB"] = -log P_(VB|<S>) + -log P_(I | VB)

"-,Ill:PRP best_score[*1 PRP"] = -log P_(PRP|<S>) + -log P_(I | PRP)

@ :NNP) best_score[1 NNP”] = -log P_(NNP|<S>) + -log P_(I | NNP)

20

An example of Viterbi Algorithm

For middle words, calculate the maximum score for all possible previous POS

tags.
I visited

j L 2NN

best_score[2 NN”] = MaX
best_score[*1 NN"] + -log P_(NN|NN) + -log P_(visited | NN),

)
best_score[“1 JJ"] + -log P_(NN|JJ) + -log P_(language | NN),
best_score[*1 VB"] + -log P_(NN|VB) + -log P_(language | NN),
i
)

=
Z
Z

:JJ

best_score[“1 PRP"] + -log P_(NN|PRP) + -log P_(language | NN),
BJ best_score[*1 NNP"] + -log P_(NN|NNP) + -log P_(language | NN),

PRA)
best_score[“2 JJ"] =
best_score[“1 NN"] + - Iog P_(JJINN) + -log P_(language | JJ),
NNP} best_score[*1 JJ"] + -log P_(JJ|3J) + -log P_(language | JJ),
best_score[*1 VB"] + -log P_(JJ|VB) + -log P_(language | JJ),

ax

21

Viterbi algorithm with features

Same as probabilities, use feature weights

|
0:<S>; ~1:NN

{1:.vB

1L:PRP

@ :NNP

best_score[“1 NN"] =&
best_score[“1 JJ"] = Q
best score[‘1 VB’ =

best_score[“1 PRP"] = ¢

best_score[“1 NNP"] =

T.<5>JJ

+
T.<S>NN o

+ O

+d

T.<5>VB

-
T,<5>PRP

T.<S>NNP

E|

E,NN,I
JJ.|
E,VB,I

a.
E.PRPI

= aE,NNP,I

22

Viterbi algorithm with features

Can add additional features.

0:<S>|~1:NN|best_score['LNN"=a__ \\+
1 1:VB | best_score['1 VB =a__, .+

I'.Ill:PRP best_score[*1 PRP"] = Q.

@'- :NNP)| best_score[*1 NNP"] =a

+0
a CAPS,PRP

!
T,<S>NNP

23

Discriminative Training Methods for Hidden Markov Models:

Theory and Experiments with Perceptron Algorithms

Michael Collins

24

Outline

1. A motivating example
2. Algorithm for tagging
3. General Algorithm

a. Proof for Convergences
4. Experiment result

25

Part of Speech (POS) Tagging

1. Maximume-entropy (ME) models
a. Advantages: flexible in the features that can be incorporated in the model.

b. Disadvantages: inference problem for such models is intractable
2. Conditional Random Fields (CRFs)
a. Better than ME

3. Structured Perceptron
a. 11.9% relative reduction in error for POS tagging compared with ME

26

A Motivating Example

e Trigram HMM taggers (Second order HMMs)
e Parameters axy:- trigram <x,y, z>, Qw - tag/word pair <t, w>
e Common approach(maximum-likelihood):

Ogy,z =10g P(z | z,y), atw = log P(w |).

The score for a tag sequence t[1:n] with a word sequence w[1:n]

Vi) n
Zz‘:l s pii-qiti T Zi:l Qt; w;

Using Viterbi algorithm to find the highest scoring.

27

A Motivating Example

e An alternative to maximum-likelihood parameter estimates
o Choose a T defining the number of iterations over the training set.
o Initially set all parameters Qxy.z and Qtw to be zero.

o In each iteration, use Viterbi to find best tagged sequence for w[1:n] to get z[1:n]
o Update parameters:

B <X, VY, z>cltimesint[1:n], c2timesin z[1:n]
B Oxyz=0xyz+C1-C2

m <t,w>cltimesint[1:n], c2timesin z[1:Nn]

m Qtw=CUtw+C1-C2

28

A Motivating Example

e Anexample
o Training data :
m the/D man/N saw/V the/D dog/N
o The highest scoring tag sequence z[1:n]:
m the/D man/N saw/N the/D dog/N
o Update parameters

m CQbnNyv, ANyv,D, Av,DN, Av,saw + 1

m CbnN,N, ANN,D, ON,D,N, CN,saw - 1
m Iftag sequence is correct -- no change.

29

Generalize the algorithm to tagged sequences

° Recap: feature vector representations
o maps a history-tag pairs to a d-dimensional feature vector

¢:HxT = R?
Each components ¢ is an arbitrary function of (h, t), eg: h: <t-1, t-2, w[1:n], i>

1 if current word w; is the
b1000(h,t) = and ¢t = DT
0 otherwise

L (w[ln t[ln ZQBS hi, ti)

30

General Representation

e Maximum-Entropy Taggers New estimate method
o Conditional probability: The “score” of a tagged sequence
L g2 @ata(ht) n d
P(t| h,a) = Z(h, @) DN agds(histi) = Zas (W[1:n)s t[1:m])

i=1 s=1

Log probability:

d
D asps(histi) — Y log Z(hi, @)
i a=1 3

31

The training algorithm for tagging

e Inputs: A training set of tagged sentences (wf,.,,.1,4.,.7)
e Initialization: Set parameter vector & = 0,
e Fort=1...T.1=1..n:

o ?[1m;] = aIrg ma'x“[l:n,r]ETn': Zs s Ps (wflmil’u{l’“i})
© If Z[1:n;] '_l£ tf_l:n,-_]_ :
as = as + Ps (wfl:n,-]: tEl:n,-]) - (1)3 (wfll:n,-]? z[l:n,-l)
e Output: Parameter vector
e Refinement: “averaged parameters” method

32

General Algorithm

e Training examples (z;,y;) for i =1...n. Inputs: Training examples (z;,y:)

Initialization: Set a = 0

e A function GEN which enumerates a set of Algorithm:
candidates GEN(z) for an input z. Fort=1...T,i=1...n

e A representation ¢ mapping each (z,y) €
X x Y to a feature vector ®(z,y) € R%.

Calculate z; = arg max.cgen(:;) ®(zi, 2) - &
If(z; # yi) then a = a + ®(zi,y:) — (x4, 2i)
Output: Parameters &

e A parameter vector a € R%.

The components GEN, ® and & define a map-
ping from an input x to an output F'(z) through

F(z) = arg

max
yeGEN(z)

‘I’(.’E,y) X —— Y, as®y(z,y)

33

Assumption for Algorithm for taggers

e The training examples are sentence/tagged-
sequence pairs: r; = wfl:m] and y; = tfl:ni]
for¢=1..:0

e Given a set of possible tags 7, we define
GEN(wyy.,)) = T", i.e., the function GEN
maps an input sentence wy.,) to the set of
all tag sequences of length n.

e The representation d(z,y) =
(w1, t1:n)) 18 defined through local
feature vectors ¢(h,t) where (h,t) is a
history/tag pair. (See Eq. 1.)

Convergence for separable data

Definition 1 Let GEN(z;) = GEN(z;) — {y:}. In
other words GEN(x;) is the set of incorrect candidates
for an ezample x;. We will say that a training sequence
(zi,y:) fori=1...n is separable with margin ¢ > 0
if there exists some vector U with ||U|| = 1 such that

Vi,Vz € GEN(z;), U:®(zi,yi) — U ®(x;,2) > 5 (3)
(10| is the 2-norm of U, i.e., ||U|| = />, U2.)

Theorem 1 For any training sequence (x,y;) which is
separable with margin &, then for the perceptron algorithm
in figure 2

2
Number of mistakes < 57
where R is a constant such that Vi,Vz €
GEN(z;) ||®(xi,yi) — ®(zi, 2)|| < R.

Independent of the number of candidates
for each example,

Depending only on the separation of the
training data

35

Proof of Theorem 1

a® :the weights before k'th mistake is made.
al =0 CU-aM <)) et
Z = argmaXy,cGEN(z;) (i y) - ab | ®(ziy) — @z, 2)I7 < R
ot = aF + ®(zy,y) — Py, 2) o ak e (@(zi,yi) — (w4,2) <0
U-a" =U-a"+U- 0@, y) —U- (i, 2) 1 &P = [|a"|P + (i, 5:) — @ (s, 2)]|”
|
[
i
i
|
!

—k
zUra” +4 +2a" - (®(xi,yi) — B(wi, 2))
U.- &k+1 2 ké. (indUCtion) S ||&k||2 +R2

U-att < U] |kt = [leM | > ke

k262 < ||@tY 2 <kR? = k< R?/$?

36

Convergence for inseparable data

Definition 2 Given a sequence (z;,yi), for a U, § pair
define mi = U-®(zi, yi) —max__ggx(,,) U (i, 2) and

e = max{0,6 —m;}. Finally, define Dus = /)|, €.

Theorem 2 For any training sequence (x;,y:), for the

first pass over the training set of the perceptron algorithm
in figure 2,

. . (R+ Dus)?
Number of mistakes < min (B + Dy s)
U.s 02

where R 1s a constant such that Vi,Vz €

GEN (z;) [|®(xi,yi) — ®(zi,2)|| < R, and the
min is taken over § > 0, ||U|| = 1.

37

Proof of Theorem 2

o

€ y) eR? D(x,y) € RH" U € ™"
i =1...d 9Pi(z,y) = Pi(z,y) U; =U;
jg=1...n @qyj(z,y) = A if (z,y) = (zj,y5) Udsj = /A

0 otherwise 0 otherwise
Vi,Vz € GEN(x;), [_I_~ ® (i, yi) — U -®(x;,2) >0
Vi,Vz € GEN(x:), ||®(zi,yi) — ®(x,2)||? < R+ A?
1011 = |[U]]* + X, &/A% =1+ Dy 5/A°
O/I00 (& (zi, i) — B(wi,2)) >= §//1 + Dy 5/A

Using Theorem 1: - D2 _ A = RDygs
kmaz (D) = 3 (R? + A?) (1 + %) kmas(v/RDu) = (R? + Dy 5) /6

38

Generalization to New Test Examples

Theorem 3 (Freund € Schapire 99) Assume all ez-
amples are generated 1.1.d. at random. Let
((x1,91)) ... (Xn,yn)) be a sequence of training ezamples
and let (Xn+1,Yn+1) be a test ezample. Then the prob-
ability (over the choice of all n + 1 examples) that the
voted-perceptron algorithm does not predict y,+1 on in-
put Xp41 ts at most

2 . (R+ Dyy)?
E, :
il [IIIJH? 92
where En41[] is an ezpected value taken over n + 1 ez-

amples, R and Dy ;s are as defined above, and the min is
taken over § > 0, ||U|| = 1.

39

Experiment Results

POS Tagging Results

Current word w; & t;
Previous word Wi_1 & t; 0 -
Word two back o 7 Method Error rate/% | Numits
e word__ Wit b Perc, avg, cc=0 2.93 10
ord two ahead Wi 4o t; — 50

Bigram features Wi_9,W;_1 & t; Perc, noavg, cc=0 | 3.68

Wi — 1, W; ol Perc, avg, cc=5 3.03 6

Wi, Wit 1 i =

Wit1, Wit & t; Perc, noavg, cc=5 | 4.04 i
gu”?nt tag Pi i iz ME, cc=0 3.4 100

revious tag Pi—1 i =

Tag two back Pi_o & t; ME, =9 3.28 200
Next tag Pit1 & t;
Tag two ahead Pit2 & t;
Bigram tag features | p;_2,pi—1 & ty cc = feature count cut-offs set

Pi—1,Di & t;

Pi>Dit1 &t

Pit1,Pif2 & t;
Trigram tag features Pi—9,Pi—1, Pi & t;

Pi—15Pi>Pit1 & t;

Pi,Pit1,Piy2 &ty

Conclusion

e Described new structured perceptron algorithm for tagging.
e The generic algorithm and the theorems describing its convergence could
apply to several other models in the NLP.

41

Distributed Training Strategies for the Structured

Perceptron
Ryan McDonald Keith Hall Gideon Mann

42

Outline

1. Introduction of distributed training strategies for the structured
perceptron

2. Background (Related Work and Structured perceptron recap)

Iterative Parameter mixing distributed structured perceptron

4, Experiments and results
a. Serial (All Data)
b. Serial (Sub Sampling)
c. Parallel (Parameter Mix)
d. Parallel (Iterative Parameter Mix)

w

43

Limitation of Structured Perceptron

e Increasing size of available training sets

e Training complexity is proportional to inference, which is frequently non-
linear in sequence length, even with strong structural independence

44

Distributed Training Strategies

Iterative parameter mixing

(@)

(@)
(@)
(@)

have similar convergence properties to the standard perceptron algorithm

find a separating hyperplane if the training set is separable

reduce training times significantly

produce models with comparable (or superior) accuracies to those trained serially on all
the data

45

Related Work

e Sub-gradient distributed training: asynchronous optimization via gradient

descent
o Require shared memory
o Less suitable to the more common cluster computing environment
e Other structured prediction classifiers: like CRF

o Conditional random fields (CRFs)
o Distributed through the gradient
o Require computation of a partition, expensive and sometimes intractable

46

Structured Perceptron Recap

Perceptron(7 = {(xq, yt)}gll

1

po o gy T g e R

w® =0, k=0
forn:1.N
ford; 1. T
Lety’ = arg maxg, w) . f(xs,y)
ify’ #yi
wk D) = wk) 4 £(xs, ye) — £(x¢,¥')
k=k+1
return w (%)

Figure 1: The perceptron algorithm.

47

Supporting Theorem 1 Recap

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin ~y. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T. If training is run indefinitely, then k < 5—22.

Proof. See Collins (2002) Theorem 1. []

Theorem 1 implies that if T is separable then
e The perceptron will converge in a finite amount of time
e It will produce aw that separates T.

48

Distributed Training Strategies for the Perceptron

e Parameter Mixing

e Iterative Parameter Mixing

49

Parameter Mixing

e Algorithm

PerceptronParamMix(7 = {(x;, yt)}gl
1. Shard 7 into S pieces T = {71, ...,7s}

2. w(® = Perceptron(7;) T
3. w=), ;L,;W(i) I
4. returnw

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. 1 Each w(®) is computed in parallel. { p =
{1, st Vs € prps > 0and Y-, py = 1.

50

Parameter Mixing

e Parameter Mixing Map-Reduce framework
o Map stage - Trains the individual models in parallel

o Reduce stage - Mixes their parameters

51

Parameter Mixing

e Limitations
o their analysis requires a stability bound on the parameters of a regularized maximum
entropy model, which is not known to hold for the perceptron.

52

Supporting Theorem 2

Theorem 2. For a any training set T separable by
margin vy, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

53

Theorem 2 Proof

Consider a binary classification setting where Y = {0, 1} and T has 4 instance.

LRl (S SRTR 200 AL S 2009) B Pk (W SPVR PR AL SP PP,

y1,1=y1,2=0 y2,1=y2,2=1

f(x,,00=[110000] f(x,,,1)=[000110]
fix,,,0)=[001000] f(x,,, 1)=[000001]
fx,,0=[011000] f(x,5,1)=[000011]
f(x,5,00=[100000] f(x,,, 1)=[000100]

2,2'

54

Theorem 2 Proof cont.

Assuming label is tie-breaking, parameter mixing might returns:
w'=[110-1-10] w?=[0110-1-1]

If both p., Y, are non-zero: all examples will be classified as 0
If p,=1 and p,=0: (x, ,, ¥, ,) will be incorrectly classified as 0

If p,=0 and p,=1:(x, ,, ¥, ,) will be incorrectly classified as 0

There is a separating vectorw=[-12-11-2 1} !!!

55

Iterative Parameter Mixing

PerceptronlterParamMix(7 = {(xq, yt)}l;j:"1

L

2
3.
4.
5
6

Shard 7 into S pieces 7 = {71,...,Ts}
w =20
forn:1..N
w(»™) = OneEpochPerceptron(7;, w)
W = Zz p’i,nw(i’n)
return w

.l_
1

OneEpochPerceptron(7, w*)
1. wO=w* k=0

2. dort il A

3 Lety’ = arg max,, wk) . f(x4,y)

4. ity £y,

5 wD = w® 4 £(xe,y:) — £(x,y)

6 Ek=k+1

7. return w®

Figure 3: Distributed perceptron using an iterative param-
eter mixing strategy. t Each w(%™) is computed in paral-
lel. § p, = {p1m, .-, s} Vikin € pyt i > 0 and
N D P = L.

56

Iterative Parameter Mixing

e [terative Parameter Mixing Map-reduce

o map computes the parameters for each shard for one epoch and
o reduce mixes and re-sends them

e The disadvantage of iterative parameter mixing, relative to simple
parameter mixing, is that the amount of information sent across the
network will increase.

57

Supporting Theorem 3

Theorem 3. Assume a training set T is separable
by margin vy. Let k; ,, be the number of mistakes that
occurred on shard 1 during the nth epoch of train-
ing. For any N, when training the perceptron with
iterative parameter mixing (Figure 3),

N 8 R
Z Z p’i,nki,n E —

2
2
n=1 i=1 L

58

Theorem 3 Proof

w(" the weight vector for the ith shard after the nth epoch of the main loop

wl:n-R the weight vector that existed on shard i in the nth epoch k errors
before w"

w@en the mixed vector from the weight vectors returned after the nth epoch

S
wiaven) _ Z s W ™)
i=1

59

Theorem 3 Proof cont.

u-witn = qu.wlnl= wktD) = wk) 1 (x4, y:) — F(x¢, ")

+u- (f(x¢,y:) — £(x4,5))
- wilEnl=1 |

- wlinl=2) 4 9y

u- W(avg,n—l) + ki,n"}’ (Al)

AVAR VARV,

60

Theorem 3 Proof cont.

w2 = wlnl=b)2
+1£(xe, ye) — £, ¥)|1®
+ 2w (BN (f(xy, ye) — £(x4,¥'))
wiltnl—1))12 L p2
wllenl=2))2 4 o p2
weven—1)2 Lk R? (A2)

IAIN A

61

Theorem 3 Proof cont.

Base Case

S S
u-wrel = Z i - w® > Z i1k 1y
=1 1=1

2

”W(avg,l)HZ

S -
> piaw®
i=1

S S
Y wiallwODIP <Y piakig R?

IA

Inductive Hypotheses

N 8
wew N > 3OS ke (IH)

n=11=1

N S
”W(avg:N)”2 < ZZﬂi,nki,nRz (IHZ)

n=1 i=1

62

Theorem 3 Proof cont.

u-w

(avg,N)

IV

S S
= > v W) e N2 < 3 el G
i=1 i=1
S S
Z pi v (u- wEeN=D 4 g) 5 Z pi N ([wEEN D2 4 k; v R?)

IV

S S
u: W(a.vg,N—l) e Z IJJ?',,Nki,N'Y — ||w(a.vg,N—1)”2 i Zﬂ'i,Nki,NRz
i=1 o=

N—1 § N—-1 §
2
[Pyl 5 —}—Zp% nkin = [Zﬂz‘,nk‘i,nR
1

n=1 i=

s
+) pinki N R

i=1

N S N S
Z Z [L?;,nk@;,n"}/ - Z Z ﬂ'i,nki,nR2
=1

n=1 i=

63

Theorem 3 Proof cont.

N S 2 N S
55 k| 7 < [P ot
n=1 =1 n=1 =1

-

64

Analysis

If we set each . _to be the uniform mixture, y. = 1/S, theorem 3 guarantees
convergence to a separating hyperplane.

If 35 1 Minkin = Othen the previous weight vector already separated the
data.

Otherwise 3% . 572 | pinkin is bounded and cannot increase indefinitely.

65

Analysis

Non-distributed: Nyop gist < RZ/'Y2

Distributed: Setting p, .=k, /k where k =3k

66

Experiments

e Serial (All Data)
o Trained serially on all the available data
e Serial (Sub Sampling)
o Shard the data, select randomly and train serially

e Parallel (Parameter Mix)
o Parameter Mixing distributed strategy

e Parallel (Iterative Parameter Mix)
o Iterative Parameter Mixing distributed strategy

67

Experiment 1

0.85

o
o

LI B S L By I B S L L L B B B L N R

—OOO?K}—*—

9
3
o

Test Data F-measure
o
~

0.65

§

Perceptron -- Serial (All Data)

Perceptron -- Serial (Sub Sampling)
Perceptron -- Parallel (Parameter Mix)
Perceptron -- Parallel (lterative Parameter Mix)

Test Data F-measure

Averaged Perceptron -- Serial (All Data)

Averaged Perceptron -- Serial (Sub Sampling)

Averaged Perceptron -- Parallel (Parameter Mix)
Averaged Perceptron -- Parallel (lterative Parameter Mix)

PR S [N TN S TN S AT SN S SU S '

Wall Clock

all Clock

Experiment 2

0.84

0.82

0.8

Unlabeled Attachment Score

0.74

2

Q

g’

—/+—— Perceptron -- Serial (All Data)
------ O--++-- Perceptron -- Serial (Sub Sampling)
— —~(— —~ Perceptron -- Parallel (lterative Parameter Mix)

Wall Clock

0.85

o o o o
o o o)) ®
) = N @ =

LB JNLENLENLIN I L N LI L L LY LN LI L LN |

-O‘“'""

Unlabeled Attachment Score

0.79

0.78

—AF—— Averaged Perceptron -- Serial (All Data)
------ O---++- Averaged Perceptron -- Serial (Sub Sampling)
— —-C——~ Averaged Perceptron -- (lterative Parameter Mix)

T oﬁ_%w%%

Wall Clock

69

Convergence Properties

N S I 2 N R2
> E”S—z ZZ’%SSX—
n=1 1=1 n=1

A
200G - & | Error mixing (10 shards)
@ s | AA Uniform‘ rrlixing (10 shards)
< _ ' A Error mixing (100 shards)
® L\ TAA, eeccccccnnnne. Uniform mixing (100 shards)
S 6000 |
m =
E L
= 4000 |
s i
'— =
% 2000 [
o

Training Epochs

Conclusions

e The analysis shows that an iterative parameter mixing strategy is both
guaranteed to separate the data (if possible) and significantly reduces the
time required to train high accuracy classifiers.

e There is a trade-off between increasing training times through distributed
computation and slower convergence relative to the number of shards.

71

