
Structured Perceptron
Ye Qiu, Xinghui Lu, Yue Lu,

Ruofei Shen

1

Outline
1. Brief review of perceptron
2. Structured Perceptron
3. Discriminative Training Methods for Hidden Markov Models: Theory and

Experiments with Perceptron Algorithms
4. Distributed Training Strategies for the Structured Perceptron

2

Brief review of perceptron

3

4

Error-Driven Updating: The perceptron algorithm
The perceptron is a classic learning algorithm for the neural model of learning.
It is one of the most fundamental algorithm. It has two main characteristics:

It is online. Instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes on to the
next one.

It is error driven. If there is no error, it doesn’t bother updating its parameter.

5

Structured Perceptron

6

Prediction Problems
Input x Predict y Prediction Type

A book review
Oh, man I love this book!
This book is so boring...

Is it positive?
Yes
No

Binary prediction
(2 choices)

A tweet
On the way to the park!
正在去公园

Its language
English
Chinese

Multi-class prediction
(several choices)

A sentence
I read a book.

Its syntactic tags Structured prediction
(millions of choices)

7

Applications of Structured Perceptron
1. POS Tagging with HMMs

- Collins “Discriminative Training Methods for Hidden Markov Models: Theory and Experiments
with Perceptron Algorithms” ACL02

2. Parsing
- Huang+ “Forest Reranking: Discriminative Parsing with Non-Local Features” ACL08

3. Machine Translation
- Liang+ “An End-to-End Discriminative Approach to Machine Translation” ACL06

4. Vocabulary speech recognition
- Roark+ “Discriminative Language Modeling with Conditional Random Fields and the Perceptron

Algorithm” ACL04

8

Structured perceptron algorithm

9

Feature representation
What is feature representation?

A feature vector is just a vector that contains information describing an
object's important characteristics.

Some example of feature representation in different areas:

In character recognition, features may include histograms counting the number of black pixels along
horizontal and vertical directions, number of internal holes, stroke detection and many others.

In spam detection algorithms, features may include the presence or absence of certain email
headers, the email structure, the language, the frequency of specific terms, the grammatical
correctness of the text.

10

https://en.wikipedia.org/wiki/Character_recognition
https://en.wikipedia.org/wiki/Histogram
https://en.wikipedia.org/wiki/Spam_(electronic)

Feature representation
In POS Tagging problem, general ways to create a feature:

Are capital letters nouns?

Are words that end with -ed verbs？

Can easily try many different ideas!

11

Some notations
A sequence of words, short-hand for

A sequence of tags, short-hand for

 A history, the context in which a tagging decision is made.

Usually, a 4-tuple

A feature mapping function. Size is

Maps a history-tag pair to a d-dimensional feature vector.

Each component could be an arbitrary function of h
and t. 12

Some notations
A feature-vector representation

For example, one such feature might be

13

Some notations

A function from fd pairs to d-dimensional feature
vectors.

Refer as a “global” representation, in contrast to as a “local”
representation.

14

An example of feature vector - POS Tagging

Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and
Structured Output Spaces, ICML 2004

15

x: The dog ate my homework.

y : <S> D N V D N <E>

An example of feature vector - Parsing

Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, Support Vector Machine Learning for Interdependent and
Structured Output Spaces, ICML 2004

16

Some notations

A function which enumerates a set of candidates for an input
x. Given a set of possible tags T , we define

A d-dimensional parameter vector

17

Recap: Structured perceptron algorithm

18

Recap: Decoding - Viterbi Algorithm in HMM

What is decoding problem?

Given a sequence of symbols (your observations) and a model, what is the
most likely sequence of states that produced the sequence.

19

An example of Viterbi Algorithm
First, calculate transition from <S> and emission of the first word for every
POS.

20

An example of Viterbi Algorithm
For middle words, calculate the maximum score for all possible previous POS
tags.

21

max

max

Viterbi algorithm with features
Same as probabilities, use feature weights

22

Viterbi algorithm with features
Can add additional features.

23

Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms

Michael Collins

24

Outline
1. A motivating example
2. Algorithm for tagging
3. General Algorithm

a. Proof for Convergences

4. Experiment result

25

Part of Speech (POS) Tagging
1. Maximum-entropy (ME) models

a. Advantages: flexible in the features that can be incorporated in the model.

b. Disadvantages: inference problem for such models is intractable

2. Conditional Random Fields (CRFs)
a. Better than ME

3. Structured Perceptron
a. 11.9% relative reduction in error for POS tagging compared with ME

26

A Motivating Example
● Trigram HMM taggers (Second order HMMs)
● Parameters αx,y,z - trigram <x, y, z>, αt,w - tag/word pair <t, w>
● Common approach(maximum-likelihood):

The score for a tag sequence t[1:n] with a word sequence w[1:n]

Using Viterbi algorithm to find the highest scoring.

27

A Motivating Example
● An alternative to maximum-likelihood parameter estimates

○ Choose a T defining the number of iterations over the training set.

○ Initially set all parameters αx,y,z and αt,w to be zero.
○ In each iteration, use Viterbi to find best tagged sequence for w[1:n] to get z[1:n]
○ Update parameters:

■ <x, y, z> c1 times in t[1:n], c2 times in z[1:n]

■ αx,y,z = αx,y,z + c1 - c2

■ <t, w> c1 times in t[1:n], c2 times in z[1:n]

■ αt,w = αt,w + c1 - c2

28

A Motivating Example
● An example

○ Training data :
■ the/D man/N saw/V the/D dog/N

○ The highest scoring tag sequence z[1:n]:
■ the/D man/N saw/N the/D dog/N

○ Update parameters

■ αD,N,V, αN,V,D, αV,D,N, αV,saw + 1

■ αD,N,N, αN,N,D, αN,D,N, αN,saw - 1
■ If tag sequence is correct -- no change.

29

Generalize the algorithm to tagged sequences
● Recap: feature vector representations

○ maps a history-tag pairs to a d-dimensional feature vector

Each components φ is an arbitrary function of (h, t), eg: h: <t-1, t-2, w[1:n], i>

30

General Representation
● Maximum-Entropy Taggers New estimate method

○ Conditional probability: The “score” of a tagged sequence

Log probability:

31

The training algorithm for tagging
● Inputs: A training set of tagged sentences
● Initialization: Set parameter vector
● For t = 1 … T, i = 1 ... n:

○
○ If ：

■
■

● Output: Parameter vector
● Refinement: “averaged parameters” method

32

General Algorithm

33

Assumption for Algorithm for taggers

34

Convergence for separable data

Independent of the number of candidates
for each example,
Depending only on the separation of the
training data

35

Proof of Theorem 1
 ：the weights before k’th mistake is made.

(induction)

36

Convergence for inseparable data

37

Proof of Theorem 2

() >=

Using Theorem 1:

38

Generalization to New Test Examples

39

Experiment Results

cc = feature count cut-offs set

40

Conclusion
● Described new structured perceptron algorithm for tagging.
● The generic algorithm and the theorems describing its convergence could

apply to several other models in the NLP.

41

Distributed Training Strategies for the Structured
Perceptron

Ryan McDonald Keith Hall Gideon Mann

42

Outline
1. Introduction of distributed training strategies for the structured

perceptron
2. Background (Related Work and Structured perceptron recap)
3. Iterative Parameter mixing distributed structured perceptron
4. Experiments and results

a. Serial (All Data)
b. Serial (Sub Sampling)
c. Parallel (Parameter Mix)
d. Parallel (Iterative Parameter Mix)

43

Limitation of Structured Perceptron
● Increasing size of available training sets

● Training complexity is proportional to inference, which is frequently non-
linear in sequence length, even with strong structural independence

44

Distributed Training Strategies
● Iterative parameter mixing

○ have similar convergence properties to the standard perceptron algorithm
○ find a separating hyperplane if the training set is separable
○ reduce training times significantly
○ produce models with comparable (or superior) accuracies to those trained serially on all

the data

45

Related Work
● Sub-gradient distributed training: asynchronous optimization via gradient

descent
○ Require shared memory
○ Less suitable to the more common cluster computing environment

● Other structured prediction classifiers: like CRF
○ Conditional random fields (CRFs)
○ Distributed through the gradient
○ Require computation of a partition, expensive and sometimes intractable

46

Structured Perceptron Recap

47

Supporting Theorem 1 Recap

Theorem 1 implies that if T is separable then
● The perceptron will converge in a finite amount of time
● It will produce a w that separates T.

48

Distributed Training Strategies for the Perceptron
● Parameter Mixing

● Iterative Parameter Mixing

49

Parameter Mixing
● Algorithm

50

Parameter Mixing
● Parameter Mixing Map-Reduce framework

○ Map stage - Trains the individual models in parallel

○ Reduce stage - Mixes their parameters

51

Parameter Mixing
● Limitations

○ their analysis requires a stability bound on the parameters of a regularized maximum
entropy model, which is not known to hold for the perceptron.

52

Supporting Theorem 2

53

Theorem 2 Proof
Consider a binary classification setting where Υ = {0, 1} and Τ has 4 instance.

Τ1 = {(x1,1, y1,1),(x1,2, y1,2)} Τ2 = {(x2,1, y2,1),(x2,2, y2,2)}
y1,1 = y1,2 = 0 y2,1 = y2,2 = 1

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]
f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]
f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]
f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

54

Theorem 2 Proof cont.
Assuming label is tie-breaking, parameter mixing might returns:
w1=[1 1 0 -1 -1 0] w2=[0 1 1 0 -1 -1]

If both μ1, μ2 are non-zero: all examples will be classified as 0

If μ1=1 and μ2=0: (x2,2, y2,2) will be incorrectly classified as 0

If μ1=0 and μ2=1: (x1,2, y1,2) will be incorrectly classified as 0

There is a separating vector w = [-1 2 -1 1 -2 1] !!!
55

Iterative Parameter Mixing

56

Iterative Parameter Mixing
● Iterative Parameter Mixing Map-reduce

○ map computes the parameters for each shard for one epoch and
○ reduce mixes and re-sends them

● The disadvantage of iterative parameter mixing, relative to simple
parameter mixing, is that the amount of information sent across the
network will increase.

57

Supporting Theorem 3

58

Theorem 3 Proof
w(i,n) the weight vector for the ith shard after the nth epoch of the main loop

w([i,n]-k) the weight vector that existed on shard i in the nth epoch k errors
before w(i,n)

w(avg,n) the mixed vector from the weight vectors returned after the nth epoch

59

Theorem 3 Proof cont.

60

Theorem 3 Proof cont.

61

Theorem 3 Proof cont.
Base Case Inductive Hypotheses

62

Theorem 3 Proof cont.

63

Theorem 3 Proof cont.

64

Analysis
If we set each μi,n to be the uniform mixture, μi, n= 1/S, theorem 3 guarantees
convergence to a separating hyperplane.

If then the previous weight vector already separated the
data.

Otherwise is bounded and cannot increase indefinitely.

65

Analysis
Non-distributed:

Distributed: Setting μi,n= ki, n/kn where kn = ∑iki,n

66

Experiments
● Serial (All Data)

○ Trained serially on all the available data

● Serial (Sub Sampling)
○ Shard the data, select randomly and train serially

● Parallel (Parameter Mix)
○ Parameter Mixing distributed strategy

● Parallel (Iterative Parameter Mix)
○ Iterative Parameter Mixing distributed strategy

67

Experiment 1

68

Experiment 2

69

Convergence Properties

70

Conclusions
● The analysis shows that an iterative parameter mixing strategy is both

guaranteed to separate the data (if possible) and significantly reduces the
time required to train high accuracy classifiers.

● There is a trade-off between increasing training times through distributed
computation and slower convergence relative to the number of shards.

71

