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Prototypical Types of Tasks

Problems related to automatic analysis of complex data such as
text, photographs, videos, and n-dimensional medical images can
be categorized into these prototypical tasks:

Classification. Recognizing type or category of a scene
captured in a photograph, output is a discrete, categorical
label.

Regression. Predicting the price of a house as a function of
its distance from a good school; output is a continuous
variable.

Density estimation. Learning a probability density function
for healthy individual scans to detect abnormalities.

Manifold learning. Capturing intrinsic variability of size and
shape of different structures in human brain from MRIs.
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Prototypical Types of Tasks

Semi-supervised. Interactive image segmentation, for
example, where user’s brush strokes define labeled data and
other pixels provide already available unlabeled data.

Active learning. Learning a general rule for detecting tumors
using only a few manual annotations, input mostly unlabeled.

What follows is a unified model of decision forests that can be
used in all of these prototypical learning tasks. Can implement and
optimize inference algorithms once and use them in many
applications.
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Review: Decision Tree Basics

A decision tree is a set of questions organized in a hierarchical
manner and represented graphically as a tree.

To estimate an unknown property of an input object, the tree
asks successive questions about its known properties. Each
question depends on the answers to the previous questions —
represented as a path through the tree. The terminal node on
the path determines the decision.

Requires (1) tests associated to internal nodes and (2)
decision-making predictors associated with each leaf.

In general, decision trees can be compared to splitting complex
problems into sets of simpler ones with a hierarchical model. Model
parameters can be selected by hand (simple) or learned from data.
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Review: Decision Tree Basics

Left: general decision tree structure. Right: a decision tree for
determining whether a photo was taken indoors or outdoors.
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Notation

Definition (Data points and features)

A generic object, called a data point, is denoted by a vector
v = (x1, x2, . . . , xd) ∈ F where the components xi represent some
attributes of the data point called features.

Features vary between applications; for computer vision v may
correspond to a pixel in an image and xi may represent responses
of a chosen filter bank at that location.
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Notation

Notation example. Input is collected in d-dimensional space. Testing is
done by each node on v, which is sent to child node. Training involves
sending all training data S0 into the tree and optimizing the split node
parameters over an energy function. (Criminsi 2012)
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Notation

Number of features depends on the type of data point and
application.

Dimensionality of feature space F = d can be large, even
infinite, so we extract a small portion of d features as we need
them.

Definition (Features of interest)

Define φ(v) =
(
xφ1 , xφ2 , . . . , xφd′

)
∈ Fd ′ ⊂ F as the selected

subset of features where d ′ denotes the dimensionality of the
subspace and φi ∈ [1, d ] denote the selected dimensions.

We usually choose a subspace Fd ′
that is much smaller than the

original (d ′ � d).
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Notation
Test functions, split functions, weak learners

We use the terms “test function,” “split function,” and “weak
learner” interchangeably.

Definition (Test function)

A test function at split node j is a function

h(v, θj) : F × T → {0, 1} ,

where 0 and 1 can be interpreted as false or true respectively, and
θj ∈ T denote the parameters of the test function at the jth split
node.

A data point v arriving at j is sent to its left or right child
according to the result of j ’s test function.
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Notation
Training points and training sets

A training point is a data point for which the attributes that
we are seeking for are actually known. For example, a set of
photos with “indoor” or “outdoor” labels.

A training set S0 is a collection of different training points.

In supervised tasks, a training point is a pair (v, y) where v is
the input feature vector and y represents a generic, known
label.

In unsupervised tasks, a training point is represnted by its
feature response and it has no associated label.
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Decision tree testing

Decision trees are separated into
an offline training phase and an
online testing phase.

(Criminsi 2012)

Testing

A new data point v starts at the root and makes it way down to a leaf
node, which contains uses a predictor to construct an output (label or
continuous value) for v.
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Decision tree training

Training

Selects the type and parameters of the test function h(v, θj)
associated with each split node j by optimizing a chosen objective
function defined on the training set.

At each node j with input
Sj , learn the function that
“best” splits Sj into SR

j and

SL
j .

Do this by maximizing an
objective function. (Criminsi 2012)
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Training objective function

The objective function at node j , in general, is defined as

θ∗j = argmax
θj∈T

Ij (1)

where

Ij = I (Sj ,SL
j ,SR

j , θj)

SL
j = {(v, y) ∈ Sj | h(v, θ) = 0}

SR
j = {(v, y) ∈ Sj | h(v, θj) = 1}

Ij captures some notion of information gain from the split while the
second two equations state that data points on which h evaluates
to 0 go left and to 1 go right.
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Stopping criteria for training

We need some way to know when to stop the training algorithm.

Can stop when the tree has some maximum number of levels
D.

Can also stop when we reach some minimum value of maxθj Ij ,
which is when the attributes that we care about in the leaf
nodes are similar to one another.

Can stop growing tree when a node contains too few training
points.

Stopping criteria prevent overfitting and loss of generalization
power.
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Weak Learner Models

Consider a geometric parameterization for split functions, with a
weak learner model formulated as θ = (φ, ψ, τ) where:

ψ defines the geometric primitive used to separate the data
(e.g. axis-aligned hyperplane, oblique hyperplane, general
surface).

τ is a parameter vector that captures thresholds for
inequalities used in the binary test.

φ is a filter function that selects features from input vector v.

We perform the optimization from equation (1) over these
subparameters.
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Linear and Nonlinear Data Separation

A simple parameterization is the linear model

h(v, θj) = [τ1 > φ(v) · ψ > τ2] (2)

where [·] is the indicator function.

In 2D, φ(v) = (x1, x2, 1)T and
ψ ∈ R3 denote a generic line in
homogenous coordinates.

Setting τ1 = ∞ or τ2 = −∞
corresponds to using a single
inequality test function.

Lines ψ aligned with an axes of the
feature space (e.g. ψ = (1, 0, ψ3) or
ψ = (0, 1, ψ3)) are often used in
boosting and are referred to as
stumps.

Axis aligned vs general line (Criminsi 2012)

Ben Haghi, Cody Han, Yury Tokpanov Structured Random Forests 17 / 36



Motivation and Review
Decision Forest Framework (tree-level)

Decision Forest Framework (forest-level)
Random Forest Specializations

Testing and Training
Weak Learner Models and Data Separation
Energy Models
Leaf Prediction Models
Randomness Model

Linear and Nonlinear Data Separation

We can replace hyperplanes with surfaces
that have more degrees of freedom. In 2D
we can use conic sections with

h(v, θj) =
[
τ1 > φT (v) ψ φ(v) > τ2

]
(3)

with ψ ∈ R3×3 representing the conic
section in homogenous coordinates.

Quadratic separation

Remark

Low dimensional weak learners can be used for high dimensional data because the
selector φj can select a small set of features for different nodes.
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Energy Models (discrete)
Entropy

By training objective functions, we reduce uncertainty using the concepts

of entropy and information gain. We can quantify the intuition of

uncertainty reduction with measures for entropy and information gain.

Shannon entropy

For discrete probability distributions we typically use Shannon
entropy.

H(S) = −
∑
c∈C

p(c) log(p(c)) (4)

where S is the set of training points and c indicates the class label.
C denotes the set of all classes and p(c) is the empirical
distribution extracted from the training points in S.
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Energy Models (discrete)
Information gain

Improvements from decision tree splits can be quantified by
measuring information gain

I = H(S)−
∑

i∈{L,R}

∣∣S i
∣∣

|S| H(S i ) (5)

Remark

Maximizing information gain gives us split parameters which
produce the highest confidence in the final distributions.
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Example

Information gain from axis aligned discrete splits (Criminsi 2012)
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Energy Models (continuous)
Entropy

We can also define entropy and information gain for continuous
labels and distributions.

Differential entropy

In place of the Shannon entropy, we use differential entropy

H(S) = −
∫
y∈Y

p(y) log(p(y)) dy (6)

where y is a continuous label and p is the probability density
functino estimated from the training points in S.
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Energy Models (continuous)

Gaussian-based models are often used to approximate p(y)
because of their simplicity. The differential entropy of a d-variate
Gaussian is

H(S) = 1

2
log

[
(2πe)d |Λ(S)|

]
(7)

where Λ(S) is the covariance matrix of the training set.

Remark

Information gain (5) can be defined the same way in continuous
models as discrete models because of the flexibility of its definition.
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Information gain from Gaussian model (Criminsi 2012)
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Leaf Prediction Models

After training, each leaf is associated with a subset of the labeled
training data.

A test point traverses the tree until it reaches a leaf, and we
generate a label for that point using the test statistics
gathered in that leaf.

In general, leaf statistics can be captured with posterior
distributions

p(c | v) and p(y | v) (8)

where c and y represent categorical (discrete) or continuous
labels and v is the data point being tested. Conditioning
denotes the fact that the distributions depend on the specific
leaf note reached by v.
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Leaf Prediction Models
MAP predictor

We can do a maximum a posteriori (MAP) estimate with

c∗ = argmax
c

p(c | v) (9)

in the discrete case. In general, however, keeping the entire
distribution around lets us reason about uncertainties better.

Ben Haghi, Cody Han, Yury Tokpanov Structured Random Forests 26 / 36



Motivation and Review
Decision Forest Framework (tree-level)

Decision Forest Framework (forest-level)
Random Forest Specializations

Testing and Training
Weak Learner Models and Data Separation
Energy Models
Leaf Prediction Models
Randomness Model

Randomness Model

During training, we inject randomness into trees in order to give
the trained trees better generalization power. Two popular ways to
do this are:

1 Random training set sampling (bagging). This typically yields
good training efficiency.

2 Randomized node optimization. This enables us to train trees
on the entire training data and yields margin-maximization
properties for ensemble models.

These two methods can be used together.
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Randomness Model
Randomized node optimization

In the optimization equation (1), we optimize with respect to the
entire parameter space T . For large dimensional problems, it can
be infeasible to optimize over T .

Idea

At node j , use a small random subset Tj ⊂ T of parameter values,
optimizing

θ∗j = argmax
θj∈Tj

Ij (10)

The amount of randomness is controlled by |Tj |/|T |. We can
define ρ = |Tj | so that when ρ = |T | there is no randomness and
when ρ = 1 we have maximum randomness and no optimization.
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Random Decision Forests

A random decision forest is an emsemble of randomly trained
decision trees.

Key aspect

The component trees in a random forest model are all randomly
different from one another, which decorrelates individual tree
predictions and results in improved generalization and robustness.

Forest properties

The weak learners, energy model, leaf predictors, and types of
randomness in its component trees influence the prediction and
estimation properties in a forest.
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Random Decision Forests

The randomness parameter ρ = |Tj | controls the correlation
between trees in a forest.

Randomness control in forest (Criminsi 2012)
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Random Decision Forests
Training and prediction

Notation

In a forest with T trees, we use t ∈ 1, . . . ,T to index component
trees.

Component trees are trained individually — this can be done
in parallel.

A test point v is simultaneously passed through all trees until
it reaches the leaves — can also be done in parallel.
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Random Decision Forests
Training and prediction

We can combine all tree predictions into a forest prediction in multiple
ways. For classification, we can use a simple average

p(c | v) = 1

T

T∑
t=1

pt(c | v) (11)

where pt(c | v) represents the posterior distribution found in the leaf of
the tth tree. We can also multiply tree outputs together

p(c | v) = 1

Z

T∏
t=1

pt(c | v) (12)

where the partition function Z ensures probabilistic normalization.
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Random Decision Forests
Example

Forest ensemble model (Criminsi 2012)
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Key Parameters

The parameter models that most influence decision forest behavior:

Maximum allowed tree depth D. Very deep trees can lead to
overfitting.

Amount of randomness (controlled by ρ) and its type. Randomness
affects tree correlation and generalization properties.

Forest size (number of trees) T . Testing accuracy generally
increases as T increases, but training time also increases.

Choice of weak learner model

Training objective function

Choice of features in practical applications
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Random Forest Specializations

The generic decision forest model we just defined can be applied to
various specific tasks:

Classification forests

Regression forests

Density estimation forests

Manifold forests

Semi-supervised forests

Random ferns and other variants

Each of the above models can be defined with slight modifications
and specifications on top of the random forest framework. If
interested, see the original paper in the references.
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Appendix For Further Reading

For Further Reading I

A. Criminsi, J. Shotton, E. Konukoglu.
Decision forests: A unified framework for classification,
regression, density estimation, manifold learning and
semi-supervised learning.
Foundations and Trends in Computer Graphics and Vision,
vol. 7, no. 2-3, pp. 81-227, 2012.
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Abstract

o A simple and effective way to integrate structural 

information in random forests

• Available topological distribution of object classes

• Coherently labelled regions

o Contents:

• Augmentation of random forests and structured label 

information

• A novel data-splitting function

Joint distributions

Learning typical label transitions between object classes

• Two possibilities for integrating the structured output 

predictions into semantic labeling
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Introduction and Motivation

o Great attention on the field of visual object classification
• Object detection

• Classification

• Tracking

• Action recognition

o Supervised learning algorithms for semantic image 
labelling

• Large amount of densely labelled training data

o Structured information
• A typical street:

Road, car, bicyclist, etc.
3



Introduction and Motivation

o Goal of structured learning:

• Providing ideas to take this form of additional, structural 

information into account in learning process

Fitting to the needs of semantic image labelling/segmentation

• Example: Street scene

A car should be driving on a road, but not on top of a building

o State-of-the-art approaches:

• Using Complementary features at different levels within 

random field models

o Structural information is mostly incorporated on the 

highest, semantic level 4



Features

• Mostly calculated on a per-pixel basis

• Incorporate local color or texture statisticsLow level 

• Operating on regions or super-pixels

• Providing shape, continuity or symmetry informationMid level

• Introducing global image statistics on the image level

• Providing information about inter-object or contextual 
relations

• Seeking for proper scene configurations

High level

5



Introduction and Motivation

o At this paper:
• Simple, effective way for incorporating structural information in the 

popular random forest

• Competitive to the other state-of-the-art learning techniques
 Boosting

 SVM

• A novel way for incorporating joint statistics about the local label 
neighborhood
 learning typical labelling transitions among object class categories

Disadvantage of standard classification:

– Can only deal with a single (atomic) label per training sample

– Meaningless label configurations

• CamVid and MSRCv2 databases
6



Introduction and Motivation

Fig. 1. Training data example
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Advantages and Disadvantages

o Advantages

1. Including the label topology in the training stage

• respecting the label configurations observed during training

2. Avoiding assigning implausible label transitions

o Disadvantages:

• Need for densely labelled training data

• Shared problem with state-of-the-art image labelling algorithms

• The results of experiments on MSRCv2:

– Well handled Non-completely labelled training data
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Randomized Decision Forests

o Extremely fast for training and classification

o Can be easily parallelized

o Inherently multi-class capable

o Tending not to over-fit

o Robust to label noise

…

Fig. 2. Binary decision forest: Ensemble of binary 

decision trees, mitigate the risk of over-fitting
9



Randomized Decision Forests

o A (binary) decision tree:
• Tree-structured classifier

• Making a prediction by routing a feature sample 𝑥 ∈ χ
through the tree to the leaf

• A node 𝑁𝐷 ψ, 𝑡𝑙 , 𝑡𝑟 ∈ 𝕋

o A leaf:

𝐿𝐹 𝜋 ∈ 𝕋
• The simplest form of a decision tree

• Able to cast a class prediction 𝜋 ∈ Υ for any sample it is 
reached by

Binary split function

ψ 𝑥 : χ → 0,1
ψ 𝑥 = 0 → 𝑡𝑙
ψ 𝑥 = 1 → 𝑡𝑟

Right decision 

sub-tree
Left decision 

sub-tree
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Class Prediction

o For a sample 𝑥 ∈ χ
• Recursively branching the sample down the tree until a 

leaf is reached

• Tree prediction function:

ℎ 𝑥 𝑡 : χ → Υ 𝑓𝑜𝑟 𝑡 ∈ 𝕋

ℎ 𝑥 𝑁𝐷 ψ, 𝑡𝑙 , 𝑡𝑟 =

ℎ 𝑥 𝐿𝐹 𝜋 = 𝜋

o Forest F prediction function: Majority of the votes

𝑦∗ = argmax
𝑦∈Υ



𝑡∈𝐹

ℎ 𝑥 𝑡 = 𝑦 (1)

ℎ(𝑥|𝑡𝑙)     if ψ 𝑥 = 0

ℎ(𝑥|𝑡𝑟)     if ψ 𝑥 = 1

Iverson bracket
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Randomized Training

o Extremely randomized trees algorithm

 Independent training

 On a random subset of the training set 𝐷 ⊆ χ × Υ

 Recursive learning procedure

 If 𝐷 < 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑖𝑧𝑒 𝑜𝑟 𝐸 𝐷 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

• 𝐿𝐹 𝜋 , 𝜋: 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝐷

𝜋 ∈ argmax
𝑧∈Υ



𝑥,𝑦 ∈𝐷

𝑦 = 𝑧 (2)

 Else: 𝑁𝐷 ψ, 𝑡𝑙 , 𝑡𝑟 is grown
• Ψ: a test function selected from a randomly generated set 𝛹

– Maximizing the expected information gain about the label 

distribution due to the split 𝐷𝑙
ψ
, 𝐷𝑟

ψ
of the training data

12



Randomized Training

ψ = argmax
ψ′∈𝛹

𝐸 𝐷 − 𝐸 𝐷;ψ′ = argmin
ψ′∈𝛹

𝐸 𝐷;ψ′

= argmin
ψ′∈𝛹

{
𝐷𝑙
𝜓′

𝐷
𝐸 𝐷𝑙

𝜓′

+
𝐷𝑟
𝜓′

𝐷
𝐸 𝐷𝑟

𝜓′

}

o 𝑡𝑙 and 𝑡𝑟: 

• Recursively grown with their respective training data 𝐷𝑙
ψ

and 𝐷𝑟
ψ

o Unbalanced training data case:

• Weighting each label 𝑧 ∈ Υ according to the inverse class frequencies 

observed in the training data D

(
(𝑥,𝑦)∈𝐷

[𝑦 = 𝑧]))
−1

• Considering in the computation of the expected information gain

Reducing the class average prediction error 13



Random Forests in Computer Vision

o Classification tasks in the image domain

• Anchoring the feature space to a pixel grid topology

• Trained on a specific feature space χ

Extracted set of 𝑑 × 𝑑 patches from multi-channel images 𝐼

Channels: Including color features such as gradients, filter banks, etc.

• A multi-channel training image:

3D matrix 𝐼

 𝐼(𝑢,𝑣,𝑐): the value at pixel (𝑢, 𝑣) and channel 𝑐

• A patch:

A triple 𝑢, 𝑣, 𝐼 ∈ χ

– Coordinate (𝑢, 𝑣) of the patch center in image 𝐼

• The label space:

Υ = 1,2, … , 𝑘 : set of 𝑘 object classes
14



Most Common Used Test Functions

ψ 1 𝑥 𝜃1, 𝜏 = 𝐼 𝑢,𝑣,0 + 𝜃1 > 𝜏 ,

ψ 2 𝑥 𝜃1, 𝜃2, 𝜏 = 𝐼 𝑢,𝑣,0 + 𝜃1 − 𝐼 𝑢,𝑣,0 + 𝜃2 > 𝜏 ,

ψ 3 𝑥 𝜃1, 𝜃2, 𝜏 = 𝐼 𝑢,𝑣,0 + 𝜃1 + 𝐼 𝑢,𝑣,0 + 𝜃2 > 𝜏 ,

ψ 4 𝑥 𝜃1, 𝜃2, 𝜏 = |𝐼 𝑢,𝑣,0 + 𝜃1 − 𝐼 𝑢,𝑣,0 + 𝜃2| > 𝜏 ,

• 𝜃𝑖 = (𝛿𝑢𝑖 , 𝛿𝑣𝑖, 𝑐𝑖) , 𝑖 = 1,2

• Displacement parameters relative to the patch center

• Indexing a point in the patch

• 𝜏 ∈ ℝ : Threshold

15



Test

• Random forest F has been trained

• Classification of a test image:

 Labelling each pixel with the most probable class 

predicted by the forest, centered on the 𝑑 × 𝑑
patch

16



Structured Learning in Random Forest

o Input data in Traditional approaches

• Assigned to single, atomic class labels

• Acting as arbitrary identifiers 

• Without any dependencies among them

• Quite noisy results

o Many computer vision problems

• Limited model
Inherently topological structure

Rendering the class labels explicitly interdependent

Awareness of the local topological structure

17



Structured Label Space

o 𝑃 = Υ𝑑
′×𝑑′

• Consists of 𝑑′ × 𝑑′ pixels

• Patches of object class labels

• 𝑝𝑖𝑗 ∈ Υ: 𝑖𝑗𝑡ℎ entry of the label patch 𝒑

• 𝑖𝑛𝑑𝑒𝑥 (0,0): Central position

• Feature patch 𝑥 ∈ χ and label patch 𝒑 ∈ 𝑷

• Association of 𝑥 = (𝑢, 𝑣, 𝐼) and 𝒑

𝒑: Holding the labels of all pixels of image 𝐼 within a 

𝑑′ × 𝑑′ neighborhood of 𝑢, 𝑣

𝑝𝑖𝑗: Label of pixel 𝑢 + 𝑖, 𝑣 + 𝑗
– Note: 𝑑 (size of feature patch) may differ from 𝑑′ (size of label patch)

• Training patches: 𝐷 ⊆ χ × 𝑃
18



Structured Label Space

• 𝑃𝑡 ⊆ 𝑃: Set of label patches used to grow the leaf 𝑡

• The class label 𝜋
• Parametrizing the leaf

• A structured label of size 𝑑′ × 𝑑′ from 𝑃

• Not just an atomic label from Υ

• Joint distribution of the label patches

• Low complexity for this step:

• Pixel independent assumption

Pr 𝒑 𝑃𝑡 = ෑ

𝑖,𝑗

𝑃𝑟 𝑖,𝑗 (𝑝𝑖𝑗|𝑃𝑡) (3)

π = argmax
𝒑∈𝑃𝑡

Pr 𝒑 𝑃𝑡 (4)

Marginal class 

distribution over all the 

label patches of pixel 

(𝑖, 𝑗)

19



Structured Label Space

Fig. 2. Examples of object class segmentation using 

unary classifiers. Best viewed in color 20



Structured Label Space

Fig. 3. Label patches reaching a leaf during training

Selection of 𝜋 is based on joint probability

21



Test Function Selection for Structured Labels

o Adaptation of the test function selection

o Naïve approach:
• Porting the test selection criterion used in the standard random forest to our 

context

• Simply associating each patch with the label we find in the center of the 
associated label patch p

• Disadvantage: Like traditional random forest

o Clever approach
• Selection based on the information gain with respect to a two-label joint 

distribution

• Associating (𝒙, 𝒑) with two labels:
 First: Provided by 𝑝00
 Second: Provided by 𝑝𝑖𝑗, position has been uniformly drawn

• Advantage:
 All entries of a label patch have the chance to influence the way a feature patch is 

branched

 Disadvantage:
 Increased complexity (|Υ|2 elements)

22



Test Function Selection for Structured Labels

oSolving the drawback:

• Considering a different test function selection 

method

Associating each training pair with just one label 𝑝𝑖𝑗
– All entries of the label patch still influence the learning procedure

– At lower computational cost

23



Structured Label Predictions

o Gathering from the trees of a forest

o Combining into single label patch prediction

o 𝐹: A trained forest

o 𝒙 = (𝑢, 𝑣, 𝐼): a test patch

o 𝑃𝐹: Set of predictions for 𝒙 gathered from each tree 𝑡 ∈ 𝐹
𝑃𝐹 = ℎ 𝒙 𝑡 ∈ 𝑃 ∶ 𝑡 ∈ 𝐹 . 5

o The label patch prediction for feature patch 𝒙
𝒑∗ = argmax

𝒑∈𝑃𝐹

Pr 𝒑 𝑃𝐹 , (6)

24



Structured Label Predictions

Fig. 4. Prediction of the structured label of a feature patch in a 

random forest.
25



Simple Fusion of Structured Predictions

o 𝑝 ∈ 𝑃: Patch label predicted for pixel 𝑢, 𝑣

o 𝑢 + 𝑖, 𝑣 + 𝑗 could be classified as 𝑝𝑖𝑗 ∈ Υ

oCollecting 𝑑′ × 𝑑′ class predictions

oHave to be integrated into single class prediction

oSimple way: Selecting the most voted class per pixel

o Outcome of fusion step: labeling 𝑙 ⊆ 𝐿

o 𝑙𝑢𝑣 ∈ Υ: The class label associated with pixel 

(𝑢, 𝑣)

26



Simple Fusion of Structured Predictions

Fig. 5. Fusion of structured prediction

27



Optimizing the Label Patch Selection

o Different and more principled approach to the 

computation of the final labeling

• Optimizing the label patch selection with respect to a 

given labelling

o Agreement of an individual label patch 𝒑:

• Located at 𝑖, 𝑗 ∈ 𝐼

• With a given labeling 𝒍 ⊆ 𝐿

• 𝑧 ∈ 𝑍𝐼: An assignment of label patches to pixels in 𝐼

𝑧𝑢𝑣 ∈ 𝑃𝐹: Label patch for pixel (𝑢, 𝑣)

𝜑 𝑖,𝑗 𝒑, 𝒍 = 

(𝑢,𝑣)∈𝐼

𝑝 𝑢−𝑖 𝑣−𝑗 = 𝑙𝑢𝑣 . (7)
28



Optimizing the Label Patch Selection

o Total agreement:

Φ 𝒛, 𝒍 = 

(𝑢,𝑣)∈𝐼

𝜑 𝑢,𝑣 𝑧𝑢𝑣, 𝒍 . (8)

o Finding the label patch configuration that leads to the 
maximum total agreement with the labelling of a test 
image

(𝑧∗, 𝑙∗) ∈ argmax
(𝑧,𝑙)

Φ 𝑧, 𝑙 𝑧, 𝑙 ∈ 𝑍𝐼 × 𝐿 . (9)

o Solve: iterative optimization method
• Selecting the best agreement label patch per pixel

• Producing a new labeling 29



Experiments

o CamVid and MSRCv2 databases

• CamVid: 11 classes

ROAD, BUILDING, SKY, TREE, SIDEWALK, CAR, COLUMN 

POLE, SIGN-SYMBOL, FENCE, PEDESTRIAN, BICYCLIST

o 24 × 24 feature patch

o 10 trees

o 500 iterations

o Stop rule: Less than 5 samples per leaf available 30



1. CamVid Experiments

Fig. 6. Illustration of feature patches with corresponding label patches, 

collected from different leaf nodes when trained on CamVid database. Bottom 

rows: Label sets and associated colors.

31



1. CamVid Experiments

Table 1. Classification results of CamVid database for label patch size 13 × 13

Table 2. Classification results of CamVid database for label patch size 11 × 11 32



Influence of the Patch Size

Fig. 7. Classification results of CamVid

database as a function of the label patch size 

using Simple Fusion

Percentage of all pixels that 

were correctly classified

Average recall over all classes

Average intersection vs. union 

score

33



2. MSRCv2 Experiments

Table 3. Classification results of MSRCv2 database 

for label patch size 11 × 11

34



2. MSRCv2 Experiments

Fig. 8. Qualitative labelling results on images of the MSRCv2

database. Top row: Original images with ground truth annotations.

Second row: Labelling using our baseline random forest classifier.

Third row: Full + Simple Fusion. Last row: Full + Optimized Selection. 
35



Conclusion

o Simple and effective way for semantic image 
labelling
• Integrating ideas from structured learning into random 

forest framework

• Incorporating the topology of the local label neighborhood 
in training process

• Using topological joint label statistics of the training data in 
the node split functions

o Two possibilities for fusing the structured label 
predictions
• Using overlapping predictions

• Selecting most compatible label patches in the 
neighborhood

36
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 Create segmentation map – segment membership 

for each pixel.

 Or label each pixel, whether it contains edge or not 

– edge map.

38
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Approach

 Random forest: train a bunch of trees on random samples + 
features, and then somehow combine their predictions.

 Training data consists of pairs of patches with corresponding 
segmentation masks (or edge maps).

 Can store any structured output in leaf nodes.

 Fast training and prediction, easy parallelization.

 Need a way of comparing structured labels.

Biggest limitation: unable to synthesize novel labels, only 
labels observed in training can be predicted.

39



Problem formalization

 Image is divided into patches of size 32x32.

 Predict 16x16 segmentation mask (or edge map) 
for every patch.

 Training data consists of pairs of patches with 
corresponding segmentation masks (or edge 
maps).

40

PAMI 2015 paper of the same authors.



Image preprocessing

 32 x 32 image patch.

 Augmented by additional channels:

• 3 color (CIE-LUV)

• 2 gradient magnitude

• 8 gradient orientation

𝑥 ∈ 𝑅32×32×13

41



Input features

42

 Two types of features are used:

 Pixel lookups 𝑥 𝑖, 𝑗, 𝑘

 Pairwise differences 𝑥 𝑖1, 𝑖1, 𝑘 − 𝑥 𝑖2, 𝑖2, 𝑘

 Total number of features per patch after 

downsampling and blurring:

 16 ∙ 16 ∙ 13 +
5 ∙ 5
2

∙ 13 = 7228



Output

Output is structured: y = 16x16 segmentation map (or edge 
map).

We want to use standard information gain criteria based on 
Shannon entropy or Gini impurity.

Need to efficiently estimate similarities between 
segmentation masks (structured labels).

1. Transformation Π: 𝑌 → 𝑍. Similarity defined in Z.

2. Map structured labels 𝑦 ∈ 𝑌 into discrete set of labels 𝑐 ∈ 𝐶 =
1,… , 𝑘 , such that labels with similar z have the same c.

43



Mapping to Z

 Transformation Π: 𝑌 → 𝑍.

 Compare pairs of pixels from two 

segmentation masks.

 Too many => use sampling of 𝑚 = 256
pixels (empirically tested).

This also injects additional randomness into 

the learning process, helping with trees 

diversity.

44



Mapping to discrete labels

Map z to c (discrete label), two options:

a) Cluster z into k clusters using K-means.

b) Top log2𝑘 PCA dimensions, assign according to 

orthant.

 Both perform similarly.

 After experimentation, they use PCA and 𝑘 = 2.

45



Training

Now we have the ability to cluster our training data.

Standard splitting criteria can be used:

𝐼𝑗 = 𝐻 𝑆𝑗 − 

𝑘∈{𝐿,𝑅}

𝑆𝑗
𝑘

𝑆𝑗
𝐻(𝑆𝑗

𝑘)

𝐻 𝑆 = −σ𝑦 𝑝𝑦 log 𝑝𝑦 (Shannon entropy)

OR

𝐻 𝑆 = σ𝑦 𝑝𝑦(1 − 𝑝𝑦) (Gini impurity)

46PAMI 2015 paper of the same authors.



Ensembling model

 For edge maps: just average of tree 
predictions.

 Use stride of 2 => each pixel receives 
256𝑇

4
= 64𝑇

predictions.

 To decorrelate predictions, train 2T total trees and 
evaluate an alternating set of T trees at each 
adjacent location.

 For segmentation mask: select y whose z is 
medoid (minimizes the sum of distances to all 
other z’s).

47



Multiscale detection

 Run this structured edge detector on original, 

half, and double resolution of input image.

 Average results after resizing to original 

resolution.

 Improves edge quality.

48



Parameters

 Image and label patch size.

 Channels and feature parameters (e.g. blurring).

 Decision forests parameters (stopping criteria, 

number of trees T, mapping parameters m and k).

 Each tree is trained on one million randomly 

selected patches.

49



Results

 Accuracy measures: 

 fixed contour threshold (ODS), per-image best threshold 
(OIS), and average precision (AP).

 Standard non-maximal suppression technique applied 
to obtain thinned edges.

 Two datasets: 

 Berkeley Segmentation Dataset and Benchmark (BSDS 
500).

 NYU Depth dataset (v2), contains depth => 11 additional 
channels are used. 

50



Example 

51PAMI 2015 paper of the same authors.



BSDS 500

52

 The dataset contains 200 training, 100 validation and 200 testing images

PAMI 2015 

paper of the 

same authors



BSDS 500
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NYU Depth dataset (v2)

54

• The NYU Depth dataset (v2) 

contains 1,449 pairs of RGB 

and depth images with 

corresponding semantic 

segmentations. 

• Image size 320x240. 

• 11 additional channels due to 

depth.

PAMI 2015 

paper of the 

same authors

Depth only

RGB only

RGB+depth



NYU Depth dataset (v2)

55Stanford DC-THz Lab



Cross-dataset generalization

56



Conclusions

 State-of-the-art accuracies.

 Real-time frame rates.

 Can be useful for time sensitive object 

recognition.
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Deep Neural Decision 

Forests

58

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, Samuel Rota Bulo



DNN + decision forests

59



Training

60

 Defined a new stochastic, differentiable framework for decision trees.

 Can be solved through SGD.

 Train iteratively simultaneously with NN.



Most impressive result

61

Authors modified GoogleNet and used in their dNDF.


