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Computer Vision Tasks

● Low-level: recognition
○ Object detection: specific, well-constrained 

conditions
○ Segmentation
○ Recognition: pre-specified learning object 

classes
● High-level: scene understanding

○ Contextual meanings
○ Object dependencies

● Datasets
○ ImageNet (14M)
○ Microsoft Common Objects in Context (2.5M)
○ CIFAR10/100 (60k)



CV Challenges

● Low-level: recognition
○ Most tasks are easy
○ Compared to humans

■ Strengths: classifying sub-classes
■ Weaknesses: small / distorted (e.g. through filters) objects

● High-level: scene understanding
○ Relative to humans: not comparable
○ Current solutions: use existing tools and combine together
○ Unsolved

● Metrics
○ Accuracy relatively meaningless (does not reflect key challenges)
○ Test set has been well exploited



Natural Language Processing Tasks

● Low-level: syntax 
○ Part-of-speech tagging
○ Parsing (grammatical analysis)

● High-level: semantics, discourse, speech
○ Understanding
○ Generation
○ Tasks: translation, segmentation, speech recognition

● Datasets
○ Variety depending on context (e.g. sentiment analysis, classification, 

clustering)



NLP metrics for evaluation

● Automatic favored over manual evaluations

● Formative (mostly automatic) and summative (mostly manual)

● Intrinsic (evaluated based on system) and extrinsic (evaluated on task external to 
system)

● Component vs end-to-end

● Example: BLEU for translation (precision based on unigrams / bigram / trigram)

● Challenge: developing more human-like automatic metrics is critical

○ Requires better understanding of language structures itself
○ Current metric: correlation with human scores



Image Generation

● Low-level: generating similar digits or images with selective objects
● High-level: novel images with complex distributions scenery

○ With NLP: Caption -> NLP understanding -> generation
● Metrics

○ No good metrics for evaluation
○ A discriminator network (GAN)?
○ Need to develop better understanding of natural images’ properties



Attention Mechanisms

● Loosely ‘inspired’ by human attention (which we know almost nothing about)
● Advantages

○ Enhances complex long-range dependencies on top of LSTM
○ Allow better understanding of trained model
○ Allows network to refer back to input sequence, instead of forcing it to encode 

all information into one fixed-length vector
● Long (in recent deep learning literature) history

○ Learning to combine foveal glimpses with a third-order Boltzmann machine 
(Larochelle & Hinton, 2010)

○ Neural machine translation by jointly learning to align and translate 
(Bahdanau & Bengio, 2015)

○ Recent advances: applied to RNN for NLP & CV



Learning to combine foveal glimpses with a third-order Boltzmann machine 
Larochelle & Hinton, 2010

● Boltzmann machine with third-order 
connections that learn how to 
accumulate information about a 
shape over several fixations

● The model uses a ‘retina’ that only 
has enough high resolution pixels to 
cover small area

● Must learn sequence of fixation

● Performance: comparable to 
existing models
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Neural machine translation by jointly learning to align and translate 
Bahdanau & Bengio, 2015

● Base: conventional RNN encoder-decoder

● Removes bottleneck on encoded vector length

● Model automatically soft-search for parts of 
source sentence relevant to predicting target 
word

● Must learn sequence of fixation

● Attention results make intuitive sense

● Performance: more robust to long input length, 
outperforms equivalent RNN





Computer Vision and Scene Understanding

● Higher-order visual 
understanding requires the 
recognition of the individual 
objects in a scene, and the 
complicated relationships that 
may exist between them.

● This may involve the 
recognition and determination 
of image cues, spatial distance, 
object motion, and object 
properties.

Deng, Zhiwei, et al. "Structure inference machines: Recurrent 
neural networks for analyzing relations in group activity 
recognition." Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. 2016.



Neuroscience-inspired Attention Mechanism
● Scene understanding in humans 

presents an environment that is very 
detailed, and where all objects are 
presented simultaneously.

● This is done by a lower-level 
“focused attention” mechanism that 
observes objects of interest one at a 
time. 

● Systems in the higher-level visual 
pathway then aggregate these 
results and make it seem like all 
objects are presented at the same 
time. 

Rensink, Ronald A. "The dynamic representation of scenes." 
Visual cognition 7.1-3 (2000): 17-42.



Caption Generation from Images
1. Determine what objects are in an image and which are important.
2. Determine relationships (both simple and complex) between objects.
3. Express the relationships in natural language.



Model Architecture: Encoder
● Convolutional neural network, Oxford 

VGGnet, pre-trained on ImageNet.
● No additional fine-tuning of the CNN.
● Feature/annotation vectors for the 

decoder taken from the lower-level, 
layer 4, before the maxpool (14 * 14 * 
512).

● Produces 14 * 14 = 196 annotation 
vectors, each with 512 dimensions.

● Lower-level features allow decoder to 
focus on parts of the image by 
selecting subsets of feature vectors.

Simonyan, Karen, and Andrew Zisserman. "Very deep 
convolutional networks for large-scale image recognition." 
arXiv preprint arXiv:1409.1556 (2014).



Model Architecture: Decoder
● Long short-term memory 

network, generates one caption 
word (y) per timestep.

● Depends on context vector (zt), 
previous hidden state (ht-1) and 
previously generated caption 
words (yt-1).

● E is a word embedding matrix 
based on a vocabulary of size K.

● The context vector (zt) is a 
determined from the 196 
annotation vectors. 



The Attention Model
● The context vector (zt) captures visual information associated with relevant locations in the input 

image.
● It is a dynamical representation that can change at each timestep.
● The context vector (zt) is constructed from the 196 annotation/feature vectors (ai, from the CNN) using 

an attention model (multilayer perceptron followed by special attention function ϕ).
● The attention model assigns a weight (αti) to each annotation vector (ai), based on the annotation 

vector and previous hidden state (ht-1). This relates how much focus to put on those annotation vectors 
when generating the next caption (y). The context vector (zt) is calculated from the annotation vectors 
(ai) and weights (αti) using a special attention function ϕ.



The Attention Model
● The context vector (zt) captures visual information associated with relevant locations in the input 

image.
● It is a dynamical representation that can change at each timestep.
● The context vector (zt) is constructed from the 196 annotation/feature vectors (ai, from the CNN) using 

an attention model (multilayer perceptron followed by special attention function ϕ).
● The attention model assigns a weight (αti) to each annotation vector (ai), based on the annotation 

vector and previous hidden state (ht-1). This relates how much focus to put on those annotation vectors 
when generating the next caption (y). The context vector (zt) is calculated from the annotation vectors 
(ai) and weights (αti) using a special attention function ϕ.



The Attention Model
● The context vector (zt) captures visual information associated with relevant locations in the input 

image.
● It is a dynamical representation that can change at each timestep.
● The context vector (zt) is constructed from the 196 annotation/feature vectors (ai, from the CNN) using 

an attention model (multilayer perceptron followed by special attention function ϕ).
● The attention model assigns a weight (αti) to each annotation vector (ai), based on the annotation 

vector and previous hidden state (ht-1). This relates how much focus to put on those annotation vectors 
when generating the next caption (y). The context vector (zt) is calculated from the annotation vectors 
(ai) and weights (αti) using a special attention function ϕ.



The Attention Function ϕ: “Soft” Deterministic
● Take the expectation of the context vector (zt) from the annotation vector (ai)  

and weights (αti), and use that as your context vector.

● This suggests that the context vector (zt) given by your attention function ϕ is a 
soft attention weighted annotation vector, rather than any particular specific 
annotation vector.



The Attention Function ϕ: “Soft” Deterministic
● Stochastic regularization is introduced using two methods:

1. By default, the annotation weights (αti) at each timestep sum over all i to 1.

Regularization can be introduced by having the weights over all timesteps t 
also approximately sum to 1.

This forces the attention model to pay more equal attention to every location of 
the image. This leads to improved metrics and more descriptive captions.



The Attention Function ϕ: “Soft” Deterministic
● Stochastic regularization is introduced using two methods:

2. The attention model also includes a scalar β, calculated from the softmax of the  
previous hidden state. 

The modified soft attention function is given by:

This pushes the model to place attention on objects in the image. The model 
can then be trained using back-propagation and the following objective 
function:



The Attention Function ϕ: “Hard” Stochastic
● Different from soft attention, here you select a single annotation vector (ai) at 

each timestep using the selection variable st,i (which is 1 at the ai of interest and 
zero for all of the others).

● Select st,i by sampling from a multinoulli distribution characterized by the 
annotation weights αti.



The Attention Function ϕ: “Hard” Stochastic
● Update the model weights by optimizing a variational lower bound on the model output 

word probability, given the annotation vector (p(y|a)).

● Where λr and λe are hyperparameters set by cross-validation, H[s] is an entropy term 
based on the multinoulli samples to reduce gradient variance, and b is a moving average 
baseline over image minibatches to reduce gradient variance.

● Also 50% of the time just set the attention location st,i to the expected value of the 
multinoulli distribution.



Output Word Probability: Deep Output Layer
● Generate the output (caption, yt) probability based on the current context vector 

(zt), LSTM state (ht), and the previously generated caption word (yt-1).
● Do this using an output layer:

● Where L and E are trained weight matrices.



Training Dataset: Microsoft COCO
● Microsoft COCO: Common 

Objects in Context
● Images (from Flickr) with 

multiple objects in a naturalistic 
context.

● 82,783 images (88% training, 
6% validation, 6% testing), 
each with at least five human 
generated captions each 
(using Amazon Mechanical 
Turk). Chen, Xinlei, et al. "Microsoft COCO captions: Data collection 

and evaluation server." arXiv preprint arXiv:1504.00325 (2015).
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Training Dataset: Flickr8k and Flickr30k

● 8,000 and 30,000 images
● More images (from Flickr) 

with multiple objects in a 
naturalistic context.

● 1,000 testing, 1,000 
validation, and the rest 
training.

Young, Peter, et al. "From image descriptions to visual 
denotations: New similarity metrics for semantic inference 
over event descriptions." Transactions of the Association 
for Computational Linguistics 2 (2014): 67-78.
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Results: Improper Captions





Caption → Image

The cat sat on the mat → 



Some subtleties



How should we model this 
problem?



How should we read in the caption?
What if we ignore the sequential structure?

I.e. just feed it into a multilayer perceptron?

Bad idea since hard to process captions of different length, and better to hard 
code in the sequential nature of text



Similar problem?
In “A Decision Tree Framework for Spatiotemporal Sequence Prediction”

-------------->



“A Decision Tree Framework for Spatiotemporal Sequence Prediction”

Converting phonetics → lip motion

This problem has a lot of temporal locality in the input -- output relation.

This motivates the SLIDING WINDOW approach



This resembles our problem if we imagine sequentially generating the image

The Cat Sat On The Mat



But we don’t have the same temporal locality

For example:

The cat sitting on the bright red mat was very fat.

Therefore a sliding window model is not the most obvious choice here (although 
probably it could be made to work…)



The authors went with LSTM to read in the input

But the idea of sequentially generating the output image is not a bad one.

It can hard code the idea that natural images are built up compositionally:

BACKGROUND + CAT + MAT = 



Maybe building output compositionally can help to do this:

Train on: 

Man on wire: Moon in sky:

Generalise to: 

Man on moon?



We may want to draw the output image sequentially

But not in the order it is fed in, and maybe paying attention to several words at a 
time, and ignoring other words

E.g.

Step 1:

The student, whilst thinking of contrived examples, was sitting in the chair.

Step 2:

The student, whilst thinking of contrived examples, was sitting in the chair.



If we’re paying attention to regions of the input caption

Why not generate image sequentially 

and pay attention to regions of the canvas too?



The model

The cat sat on the mat

v(The) v(cat) v(sat) v(on) v(the) v(mat)

Bi-directional LSTM

Attention

v(The) v(cat) v(sat) v(on) v(the) v(mat)

Compute image 
residual + region of 
attention

Image at t-1

Image at t



Our model has several components

But they are all neural network modules 

→ differentiable end-to-end

→ train by SGD



Portion 
of 
caption

Noise

Hidden 
state

Image 
residual

Time step t

Portion 
of 
caption

Noise

Hidden 
state

Image 
residual

Time step t-1

Caption



Comments on the model
It has a lot of redundancy:

E.g. 

1. The previous hidden state feeds into a lot of different components… Why?    
…..It probably improved test performance

2. Both the bidirectional LSTM input and the attention mechanism on the input 
enable to link words which are far apart. Are both really necessary?

Essentially the model is very flexible.



The drawing mechanism
The drawing mechanism also uses attention…

1
     1

1

1
     1
 1 =



Now must discuss learning
Feed in caption + ground truth image

Maximise lower bound on log likelihood, conditioned on caption

Amounts to a reconstruction loss on the attended to image region, plus a 
regularisation to ensure a noisy latent code (prevents memorisation of the training 
set)

The loss can be reduced by altering the attended to region, altering the drawing 
mechanism, altering the attention applied to caption, altering the caption LSTM...



Results

We can compose concepts not seen in training set



We can change the color of a bus…………...But can’t turn a dog into a cat



Again, we can compose. And not just reproducing training set



Interpretability







Problems
1. No universally agreed upon way to evaluate generative models
2. No link between words attended to and patch drawn at a particular time step
3. Sharpening the images using a GAN at the end is dodgy



There’s still a long way to go:

State of 
the art:



Thank you



END OF PRESENTATION



Standard RNN

(Olah, 2015)
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Variational Autoencoders (VAE)

Minimizing 2 losses: generative and latent loss

Reparameterization
Q(z|x)



Generative adversarial networks





Metrics: BLEU (2002)
● Automatic, quick, 

language-invariant, machine 
translation evaluation measure - 
bilingual evaluation understudy 
(BLEU)

● Compare machine translation to 
professional human translation.

● Compare n-gram matches without 
regard to position, the more 
matches, the better the machine 
translation.

● Clip the n-gram precision and modify 
so short sentences aren’t favored.

Chen, Xinlei, et al. "Microsoft COCO captions: Data collection 
and evaluation server." arXiv preprint arXiv:1504.00325 (2015).

Papineni, Kishore, et al. "BLEU: a method for automatic 
evaluation of machine translation." Proceedings of the 40th 
annual meeting on association for computational linguistics. 
Association for Computational Linguistics, 2002.



Metrics: METEOR (2014)

Lavie, Michael Denkowski Alon. "Meteor universal: 
Language specific translation evaluation for any target 
language." ACL 2014 (2014): 376.


