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Computer Vision Tasks

Low-level: recognition

O

Object detection: specific, well-constrained
conditions

Segmentation

Recognition: pre-specified learning object
classes

High-level: scene understanding

o Contextual meanings
o Object dependencies
Datasets
o ImageNet (14M)
o Microsoft Common Objects in Context (2.5M)
o CIFAR10/100 (60k)
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CV Challenges

e Low-level: recognition
o Most tasks are easy
o Compared to humans
m Strengths: classifying sub-classes
m Weaknesses: small / distorted (e.g. through filters) objects
e High-level: scene understanding
o Relative to humans: not comparable
o Current solutions: use existing tools and combine together
o Unsolved
e Metrics
o Accuracy relatively meaningless (does not reflect key challenges)
o Test set has been well exploited



Natural Language Processing Tasks

e Low-level: syntax
o Part-of-speech tagging
o Parsing (grammatical analysis)
e High-level: semantics, discourse, speech
o Understanding
o Generation
o Tasks: translation, segmentation, speech recognition
e Datasets
o Variety depending on context (e.g. sentiment analysis, classification,
clustering)



NLP metrics for evaluation

e Automatic favored over manual evaluations
e Formative (mostly automatic) and summative (mostly manual)

e |Intrinsic (evaluated based on system) and extrinsic (evaluated on task external to
system)

e Component vs end-to-end
e Example: BLEU for translation (precision based on unigrams / bigram / trigram)
e Challenge: developing more human-like automatic metrics is critical

o Requires better understanding of language structures itself
o Current metric: correlation with human scores



Image Generation

e Low-level: generating similar digits or images with selective objects
e High-level: novel images with complex distributions scenery
o  With NLP: Caption -> NLP understanding -> generation
e Metrics
o No good metrics for evaluation
o A discriminator network (GAN)?
o Need to develop better understanding of natural images’ properties

(Generator

Discriminator




Attention Mechanisms

e Loosely ‘inspired’ by human attention (which we know almost nothing about)
e Advantages
o Enhances complex long-range dependencies on top of LSTM
o Allow better understanding of trained model
o Allows network to refer back to input sequence, instead of forcing it to encode
all information into one fixed-length vector
e Long (in recent deep learning literature) history
o Learning to combine foveal glimpses with a third-order Boltzmann machine
(Larochelle & Hinton, 2010)
o Neural machine translation by jointly learning to align and translate
(Bahdanau & Bengio, 2015)
o Recent advances: applied to RNN for NLP & CV



Learning to combine foveal glimpses with a third-order Boltzmann machine
Larochelle & Hinton, 2010

e Boltzmann machine with third-order
connections that learn how to
accumulate information about a i oo (i
shape over several fixations ‘ o

Periphery (low-resolution)
AN

Retinal transformation
(reconstruction from Xg)

e The model uses a ‘retina’ that only
has enough high resolution pixels to s
cover small area

e Must learn sequence of fixation

Fovea (high-resolution)

e Performance: comparable to A B
existing models



Learning to combine foveal glimpses with a third-order Boltzmann machine
Larochelle & Hinton, 2010

Experiment 1: MNIST with 4 fixations
e Boltzmann machine with third-order
connections that learn how to
accumulate information about a

shape over several fixations
e The model uses a ‘retina’ that only ‘
has enough high resolution pixels to
cover small area Model Error
NNet+RBM [22] 3.17% (& 0.15)
e Must learn sequence of fixation SVM [21] 3.03% (£ 0.15)
Multi-fixation RBM
e Performance: comparable to (hybrid) 3.20% (£ 0.15)
existing models Multi-fixation RBM
(hybrid-sequential) | > 0% (+0.14)




Neural machine translation by jointly learning to align and translate
Bahdanau & Bengio, 2015

yt- 1 yt

Base: conventional RNN encoder-decoder

Removes bottleneck on encoded vector length

Model automatically soft-search for parts of
source sentence relevant to predicting target
word

Must learn sequence of fixation

Attention results make intuitive sense

Performance: more robust to long input length, Sigute L Lhe graptical (-
_ tration of the proposed model

outperforms equivalent RNN trying to generate the ¢-th tar-

get word g; given a source
sentence (T1,Z2,...,27).
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Computer Vision and Scene Understanding

e Higher-order visual
understanding requires the
recognition of the individual
objects in a scene, and the
complicated relationships that
may exist between them.

e This may involve the
recognition and determination

of image cues, spatial distance,
- . - Deng, Zhiwei, et al. "Structure inference machines: Recurrent
ObJeCt mOtlon’ and ObJeCt neural networks for analyzing relations in group activity

. recognition." Proceedings of the IEEE Conference on
propertles . Computer Vision and Pattern Recognition. 2016.



Neuroscience-inspired Attention Mechanism

e Scene understanding in humans (System li - Setting (nonatteniional)j% (" System Il - Object (attentional) )
presents an environment that is very :
detailed, and where all objects are
presented simultaneously.

e This is done by a lower-level
“focused attention” mechanism that
observes objects of interest one at a
time. 3 £~ e

e Systems in the higher-level visual [LDW-'eve' Vismnj
pathway then aggregate these
results and make it seem like all
objects are presented at the same
time.

Scene Schema
[

Focused attention

Proto-objects

Pixels

Rensink, Ronald A. "The dynamic representation of scenes."
Visual cognition 7.1-3 (2000): 17-42.



Caption Generation from Images

1. Determine what objects are in an image and which are important.
2. Determine relationships (both simple and complex) between objects.
3. Express the relationships in natural language.

A ]
[bird |
flying
over
>l a
body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by

Image  Feature Extraction over the image word
generation
»

14x14 Feature Map




Convolutional neural network, Oxford
VGGnet, pre-trained on ImageNet.
No additional fine-tuning of the CNN.
Feature/annotation vectors for the
decoder taken from the lower-level,
layer 4, before the maxpool (14 * 14 *
512).

Produces 14 * 14 = 196 annotation
vectors, each with 512 dimensions.
Lower-level features allow decoder to
focus on parts of the image by
selecting subsets of feature vectors.

Simonyan, Karen, and Andrew Zisserman. "Very deep
convolutional networks for large-scale image recognition."
arXiv preprint arXiv:1409.1556 (2014).

Model Architecture: Encoder

ConvNet Conﬁf,;uration
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Model Architecture: Decoder

e Long short-term memory
network, generates one caption
word (y) per timestep.

e Depends on context vector (z,), h,.,
previous hidden state (h, ,) and
previously generated caption
words (y,_,)- EY:3

e E is a word embedding matrix
based on a vocabulary of size K. 7 l SN

e The context vector (z,) is a ; EYea
determined from the 196
annotation vectors.

2
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The Attention Model

e The context vector (z,) captures visual information associated with relevant locations in the input
image.

e |tis a dynamical representation that can change at each timestep.

e The context vector (z,) is constructed from the 196 annotation/feature vectors (a,, from the CNN) using
an attention model (multilayer perceptron followed by special attention function ¢).

e The attention model assigns a weight (a,,) to each annotation vector (a,), based on the annotation
vector and previous hidden state (h, ,). This relates how much focus to put on those annotation vectors
when generating the next caption (y). The context vector (z,) is calculated from the annotation vectors
(a,) and weights (a,;) using a special attention function ¢.
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The Attention Model

e The context vector (z,) captures visual information associated with relevant locations in the input
image.

e |tis a dynamical representation that can change at each timestep.

e The context vector (z,) is constructed from the 196 annotation/feature vectors (a,, from the CNN) using
an attention model (multilayer perceptron followed by special attention function ¢).

e The attention model assigns a weight (a,,) to each annotation vector (a,), based on the annotation
vector and previous hidden state (h, ,). This relates how much focus to put on those annotation vectors
when generating the next caption (y). The context vector (z,) is calculated from the annotation vectors
(a,) and weights (a,;) using a special attention function ¢.
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The Attention Model

e The context vector (z,) captures visual information associated with relevant locations in the input
image.

e |tis a dynamical representation that can change at each timestep.

e The context vector (z,) is constructed from the 196 annotation/feature vectors (a,, from the CNN) using
an attention model (multilayer perceptron followed by special attention function ¢).

e The attention model assigns a weight (a,,) to each annotation vector (a,), based on the annotation
vector and previous hidden state (h, ,). This relates how much focus to put on those annotation vectors
when generating the next caption (y). The context vector (z,) is calculated from the annotation vectors
(a,) and weights (a,;) using a special attention function ¢.

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)
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The Attention Function ¢: “Soft” Deterministic

e Take the expectation of the context vector (z,) from the annotation vector (a.)
and weights (a,.), and use that as your context vector.

L
Ep(st |a) [‘%t] — Z Ot A5
1=1

e This suggests that the context vector (z,) given by your attention function ¢ is a
soft attention weighted annotation vector, rather than any particular specific

annotation vector. .
¢ ({as},{as}) = i auag



The Attention Function ¢: “Soft” Deterministic

e Stochastic regularization is introduced using two methods:

1. By default, the annotation weights (a,.) at each timestep sum over all j to 1.

Dot = 1

Regularization can be introduced by having the weights over all timesteps ¢
also approximately sum to 1.

Zt Oy = I

This forces the attention model to pay more equal attention to every location of
the image. This leads to improved metrics and more descriptive captions.



The Attention Function ¢: “Soft” Deterministic

e Stochastic regularization is introduced using two methods:

2. The attention model also includes a scalar B, calculated from the softmax of the

previous hidden state.
B = o(fp(he-1))

The modified soft attention function is given by:

6 ({ai} {ai}) = BT cua

This pushes the model to place attention on objects in the image. The model
can then be trained using back-propagation and the following objective

function: B C
Ly =—log(P(y[x)) +A> (1= oy)?
i [



The Attention Function ¢: “Hard” Stochastic

e Different from soft attention, here you select a single annotation vector (a,) at
each timestep using the selection variable s_ . (which is 1 at the a, of interest and
zero for all of the others).

Z; = Z St,iy

e Select s, . by sampling from a multinoulli distribution characterized by the
annotation weights a,..
Sy ~ Multinoulliz, ({«; })



The Attention Function ¢: “Hard” Stochastic

e Update the model weights by optimizing a variational lower bound on the model output
word probability, given the annotation vector (p(y|a)).

oL, 1 2L lﬁlogp(y | §”,a)+

oW - N oW

n=1
OH[5"]
ow

dlogp(s” | a)

T + Ae

Ar(logp(y | 5",a) — b)

e Where A_and A_ are hyperparameters set by cross-validation, H[s] is an entropy term
based on the multinoulli samples to reduce gradient variance, and b is a moving average
baseline over image minibatches to reduce gradient variance.

br = 0.9 X bp_1 + 0.1 x logp(y | 5;,a)

e Also 50% of the time just set the attention location s, . to the expected value of the
multinoulli distribution.



Output Word Probability: Deep Output Layer

e Generate the output (caption, y,) probability based on the current context vector

(z,), LSTM state (h,), and the previously generated caption word (y, ,).
e Do this using an output layer:

p(yela, yi™!) o« exp(Lo(Ey;—1 + Lyhy + L,2;))

e Where L and E are trained weight matrices.



Training Dataset: Microsoft COCO

e Microsoft COCO: Common
Objects in Context

e Images (from Flickr) with
multiple objects in a naturalistic
context.

e 82,783 images (88% training,
6% validation, 6% testing),
each with at least five human
generated captions each
(using Amazon Mechanical
Turk).

Please describe the image:

prev | next |

=9 Instructions:
“'A » Describe all the important parts of

the scene.

+ Do not start the sentences with
"There is".

+ Do not describe unimportant
details.

+ Do not describe things that might
have happened in the future or past.
+ Do not describe what a person
might say.

* Do not give people proper names.
+ The sentence should contain at
least 8 words.

Chen, Xinlei, et al. "Microsoft COCO captions: Data collection
and evaluation server." arXiv preprint arXiv:1504.00325 (2015).



Training Dataset: Microsoft COCO

a cat sleeping with its head resting on a sneaker.

e Microsoft COCO: Common L g e e OO
Objects in Context © vt it i s on sk

e Images (from Flickr) with SR
multiple objects in a naturalistic
context.

e 82,783 images (88% training,
6% validation, 6% testing),
each with at least five human
generated captions each
(using Amazon Mechanical

Turk)' Chen, Xinlei, et al. "Microsoft COCO captions: Data collection
and evaluation server." arXiv preprint arXiv:1504.00325 (2015).



Training Dataset: Microsoft COCO

e Microsoft COCO: Common
Objects in Context

e Images (from Flickr) with
multiple objects in a naturalistic
context. i oot cariorip

e 82,783 images (88% training,
6% validation, 6% testing),
each with at least five human
generated captions each

(u SI ng Am aZO n M eCh a n ICal A horse carrying a large load of hay and Bunk bed with a narrow shelf sitting
two people sitting on it. underneath it.
TUI’k). Chen, Xinlei, et al. "Microsoft COCO captions: Data collection

and evaluation server." arXiv preprint arXiv:1504.00325 (2015).



Training Dataset: Flickr8k and Flickr30k

e 8,000 and 30,000 images

e More images (from Flickr)
with multiple objects in a
naturalistic context.

e 1,000 testing, 1,000
validation, and the rest
training.

Young, Peter, et al. "From image descriptions to visual

denotations: New similarity metrics for semantic inference

over event descriptions." Transactions of the Association
for Computational Linguistics 2 (2014): 67-78.

IMAGE 2586533475
BoLEs

SENTENCES

1. Woman in a green dress
standing on with
cars and bicycles behind
her .

2. A woman with a purse and
luggage checks her
cellphone on :

3.Awoman in a green dress
stops to look at her phone .

4. A woman in a green dress
waits with her luggage .

5. A woman texting by her car

| ENTITIES

W25 4s EEES 10

‘ Show All Clear




Results: Caption Generation

Table 1. BLEU-1,2,3 4/METEOR metrics compared to other methods, | indicates a different split, (—) indicates an unknown metric, o
indicates the authors kindly provided missing metrics by personal communication, > indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model BLEU-1 | BLEU-2 \ BLEU-3 \ BLEU-4 | METEOR
Google NIC(Vinyals et al., 2014)T* 63 41 27 — —
Flickr8k Log Bilinear (Kiros et al., 2014a)° 65.6 42.4 27.7 17.7 17.31
Soft-Attention 67 44.8 29.9 19.5 18.93
Hard-Attention 67 45.7 314 21.3 20.30
Google NICT°* 66.3 42.3 27.7 18.3 —
; Log Bilinear 60.0 38 25.4 17.1 16.88
Flickr30k Soft-Attention 66.7 434 288 19.1 18.49
Hard-Attention 66.9 43.9 29.6 19.9 18.46
CMU/MS Research (Chen & Zitnick, 2014)¢ — — - — 20.41
MS Research (Fang et al., 2014)te — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 30.4 20.3 —
COCO Google NICT°® 66.6 46.1 32.9 24.6 —
Log Bilinear® 70.8 48.9 344 24.3 20.03
Soft-Attention 70.7 49.2 34.4 24.3 23.90
Hard-Attention 71.8 50.4 35.7 25.0 23.04




Results: Caption Generation

Figure 3. Examples of attendlng to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

A stop sign is on a road with a
mountain in the background.

A Ilttle girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Results: Attentlon Mechanism (Soft)

AlD.98) wornan(0.54) s(0,37)

in(0.21)

throwing(0.33) . frisbae(0.37)

park{0.35)

(b) A woman is throwing a frisbee in a park.



(a) A man and a woman playing frisbee in a field.



Results: Attentlon Mechanism (Soft)

AlD.99) large(0.49) white(0.40)

bird({0.35) standing(0.29)

(b) A large white bird standing in a forest.

forest{.54)




giraffe standing

Results: Attentlon Mechanlsm (Hard)

field

(a) A giraffe standing in the field with trees.




Results: Attentlon Mechanism (Soft)

Al0.98) woman(0.38)

at{0.11)

table(0.22)

(b) A woman is sitting at a table with a large pizza.



Results: Attentlon Mechanlsm (Hard)

Ial-ge- 7

(a) A man is standing in a market with a large amount of food.



Results: Improper Captions

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

.,
8 v
" 5

A Iarge white bird standing in a forest. A woman holding a clock in her hand. A man wearing a hat and
a hat on a skateboard.

A person is standmg on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.




GENERATING IMAGES FROM CAPTIONS
WITH ATTENTION

Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba & Ruslan Salakhutdinov

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada
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Caption — Image

The cat sat on the mat —




Some subtleties




How should we model this
problem?



How should we read in the caption?

What if we ignore the sequential structure?

l.e. just feed it into a multilayer perceptron?

Bad idea since hard to process captions of different length, and better to hard
code in the sequential nature of text



Similar problem?

In “A Decision Tree Framework for Spatiotemporal Sequence Prediction”

Input speech: “PREDICTION?”
Frame|1 2 3 4 5 6 7 8 91011121314151617 18192021 22
(a) X Token - p p r thih d d ih ih ih ith k k sh sh sh shuhuh n -




“A Decision Tree Framework for Spatiotemporal Sequence Prediction”
Converting phonetics — lip motion
This problem has a lot of temporal locality in the input -- output relation.

This motivates the SLIDING WINDOW approach



This resembles our problem if we imagine sequentially generating the image




But we don’t have the same temporal locality

For example:

The cat sitting on the bright red mat was very fat.

Therefore a sliding window model is not the most obvious choice here (although
probably it could be made to work...)



The authors went with LSTM to read in the input

But the idea of sequentially generating the output image is not a bad one.

It can hard code the idea that natural images are built up compositionally:

I sit on the mat, therefore | am.

BACKGROUND + CAT + MAT =

G ey-efcarpan-piclures. com




Maybe building output compositionally can help to do this:
Train on:

Man on wire: Moon in sky:

Generalise to:

Man on moon?




We may want to draw the output image sequentially

But not in the order it is fed in, and maybe paying atte
time, and ignoring other words

E.g.

Step 1:

The student, whilst thinking of contrived examples, w
Step 2:

The student, whilst thinking of contrived examples,

www.alamy.com - ASRINX



If we're paying attention to regions of the input caption
Why not generate image sequentially

and pay attention to regions of the canvas too?



The model

Image at t-1

Compute image
‘ residual + region of

attention
v(cat) v(sat)
‘ Attention
v(The) v(cat) v(sat) v(on) v(the) v(mat)

] Bi-directional LSTM

The cat sat on the mat



Our model has several components
But they are all neural network modules
— differentiable end-to-end

— train by SGD



Time step t

Image

residual

A

| Hidden

Time step t-1
Image
residual
Hidden
state

Portion
of Noise
caption

=

state

AN

Porti
R [

caption

\

Noise

-

Caption




Comments on the model

It has a lot of redundancy:
E.g.

1. The previous hidden state feeds into a lot of different components... Why?
..... It probably improved test performance

2. Both the bidirectional LSTM input and the attention mechanism on the input
enable to link words which are far apart. Are both really necessary?

Essentially the model is very flexible.



The drawing mechanism

The drawing mechanism also uses attention...

1
1
1




Now must discuss learning

Feed in caption + ground truth image

Maximise lower bound on log likelihood, conditioned on caption

£=5"Q(Z|xy)log P(x|y, Z) - Dkt (QZ | %) | P(Z|y)) < log P(x|y). ()

Amounts to a reconstruction loss on the attended to image region, plus a

regularisation to ensure a noisy latent code (prevents memorisation of the training
set)

The loss can be reduced by altering the attended to region, altering the drawing
mechanism, altering the attention applied to caption, altering the caption LSTM...



Results

VS WL BERE 7.
PaE= . WF OO0g 5 < OF

A stop sign is flying in A herd of elephants fly- A toilet seat sits open in A person skiing on sand
blue skies. ing in the blue skies. the grass field. clad vast desert.

Figure 1: Examples of generated images based on captions that describe novel scene compositions that are
highly unlikely to occur in real life. The captions describe a common object doing unusual things or set in a
strange location.

We can compose concepts not seen in training set



LSd=
A yellow school bus
parked in a parking lot.

T
FE -

The decadent chocolate

-~ ([ < ' '
ol S ENE =SSR
A red school bus parked A green school bus A blue school bus parked
in a parking lot. parked in a parking lot. in a parking lot.

PELE alEy L @F
ALHD wilu «a~

A bowl of bananas is on A vintage photo of a cat. A vintage photo of a dog.

desert is on the table.

the table.

Figure 3: Top: Examples of changing the color while keeping the caption fixed. Bottom: Examples of changing
the object while keeping the caption fixed. The shown images are the probabilities o(c7). Best viewed in

colour.

We can change the color of a bus............... But can’t turn a dog into a cat
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A very large commercial A very large commer- A herd of elephants walk- A herd of elephants walk-
plane flying in blue skies. cial plane flying in rainy ing across a dry grass ing across a green grass
skies. field. o field.

Figure 4: Bottom: Examples of changing the background while keeping the caption fixed. Top: The respective
nearest training images based on pixel-wise L2 distance. The nearest images from the training set also indicate
that the model was not simply copying the patterns it observed during the learning phase.

Again, we can compose. And not just reproducing training set



Interpretability

T+ ANNE TAIF NTES
THRECD NEE™= BTN e,

A rider on a blue motor- A rider on a blue motor- A surfer, a woman, and a A surfer, a woman, and a
cycle in the desert. cycle in the forest. child walk on the beach.  child walk on the sun.

e ST AN W
T=—=L1 === PEPE BFEN

alignDRAW LAPGAN Conv-Deconv VAE Fully-Conn VAE

Figure 5: Top: Examples of most attended words while changing the background in the caption. Bottom: Four
different models displaying results from sampling caption A group of people walk on a beach with surf boards.



APPENDIX C: EFFECT OF SHARPENING IMAGES.

Some examples of generated images before (top row) and after (bottom row) sharpening im-
ages using an adversarial network trained on residuals of a Laplacian pyramid conditioned on the
skipthought vectors of the captions.
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Figure 7: Effect of sharpening images.




Problems

1. No universally agreed upon way to evaluate generative models
2. No link between words attended to and patch drawn at a particular time step
3. Sharpening the images using a GAN at the end is dodgy



There’s still a long way to go:

State of
the art:

SEALd
BT o=

A red school bus parked
in a parking lot.




Thank you



END OF PRESENTATION



Standard RNN
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Standard RNN
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Vanishing and exploding gradient problems (Bengio et al, 1994; Pascanu et al, 2013)
(Olah, 2015)



LSTM
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(Olah, 2015)



LSTM Cell

co=0andhy =0

Activations
* 04. sigmoid

Forget gate fi =04(Wsxy +Ushi—q1 + by)

* Op- tanh

fi,c,o,h=dXx1
. x=nXxl
1t = ag(W}a:t + Uihtfl 5 bz)
W=dxn
U=dxd

Input layer

va

Cell state update J:T er-%% Ct = ft oC—1 + ?:t O O'h(Wc.’Bt + Ucht—l + bc)

Output G

Ot = 0y (Woa:t + Uoht_l -+ bo)
o1 ()
(filtered cell state)

ht = O¢ OO'h(Ct)

v-.

(Olah, 2015)



Variational Autoencoders (VAE)

mean vector

sampled
latent vector

- N
Encoder Decoder
Network Network
N -
(conv) (deconv)

standard deviation
vector

Reparameterization

O(zlx)

Minimizing 2 losses: generative and latent loss




Generative adversarial networks
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... , £(™} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo~ 3 [los D (2) +10g (1 - 2 (c (=)))].

end for

e Sample minibatch of m noise samples {z(!), ..., z(™)} from noise prior p,(z).
e Update the generator by descending its stochastic gradient:

%o, 3108 (1-0 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Metrics: BLEU (2002)

Automatic, quick,
language-invariant, machine
translation evaluation measure -
bilingual evaluation understudy
(BLEU)

Compare machine translation to
professional human translation.
Compare n-gram matches without
regard to position, the more
matches, the better the machine
translation.

Clip the n-gram precision and modify
so short sentences aren’t favored.

> i 2 min(hg(c;), max hi(si5))
CPlC,5) = >i Dr hk(ei) ’

1 if lc > lg
b(ca S) - {elfs/fc if lc < lS J

N
BLEUN(C, S) = b(C, S) €exXp (Z Wy IOgCPn(C: S)) ’
n=1
3)

Chen, Xinlei, et al. "Microsoft COCO captions: Data collection
and evaluation server." arXiv preprint arXiv:1504.00325 (2015).

Papineni, Kishore, et al. "BLEU: a method for automatic
evaluation of machine translation." Proceedings of the 40th
annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002.



Metrics: METEOR (2014)

0
Pen =y (Fh)
m

_ P‘TH.RTH.
- aP, + (1-—a)R,

FTTL ean

R?‘TL

2k hw(sig)
METEQOR = (1 — PER)F?TLE(LR

Lavie, Michael Denkowski Alon. "Meteor universal:
Language specific translation evaluation for any target
language." ACL 2014 (2014): 376.



