
Active Learning for Structured Prediction

Rohan Choudhury, Joey Hong, Rohan Doshi

Caltech

May 30, 2017

1 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

2 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

3 / 91

Introduction

I Coactive Learning is a model of interaction between learning
system and a human user.

I At each step, system predicts an object (possibly structured)
given some context, and the user provides slightly improved
object as feedback.

I User feedback is often implicit (inferred from behavior).

I The goal of the system is to minimize regret = total deviation
from optimal predictions.

4 / 91

Example: Web Search

I User types in a query (e.g.
’coactive learning’) to search
engine

I Search Engine returns a
ranking of documents [A, B,
C, D, E, ...]

I User clicks on documents
(e.g. B and D)

5 / 91

Introduction

I User feedback is only an incremental improvement, not
necessarily optimal

I For web search, if user clicked B and D, system can infer that
the ranking [B, D, A, C, E, ...] would be better.

I Feedback unlikely the optimal ranking.

I System does not receive optimal prediction, nor any utility
functions.

6 / 91

Key Contributions

I Formalized interaction between learning system and user into
a Coactive Learning Model.

I Define regret, and made key modeling assumptions about user
feedback via behavior.

I Derive learning algorithms for Coactive Learning Model,
including linear utility and convex cost functions.

I Perform structured output prediction.
I Show O(1/

√
T) regret bounds.

I Provide empirical evaluations on a movie recommendation and
a web-search task.

7 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

8 / 91

Related Work
I The Coactive Learning Model bridges two previously studied

forms of feedback
I Expert Advice Model: Utilities of all possible actions are

revealed.
I Multi-armed Bandit Model: Chooses an action and observe the

utility of (only) that action.
I Goal is to minimize regret.

Figure 1: Multi-armed Bandit Problem Illustration 9 / 91

Expert Advice

I Have access to N “experts”, who makes predictions {fi ,t} at
time t. Also exists convex loss function `.

I At each time step t:
I Observes f1,t , . . . , fN,t and predicts pt .
I Outcome yt is revealed.
I Suffers loss `(pt , yt) and experts suffer `(fi,t , yt).

I Try to minimize regret:

REGT =
T∑
i=1

`(pt , yt)− min
i∈1...N

T∑
i=1

`(fi ,t , yt).

I Using Exponential Weighted Average (Multiplicative Weights
with continuous labels) algorithm, we can get regret at most
O(
√
T logN).

10 / 91

Multi-armed Bandit Problem

I Set of N “arms” (actions)
I At each time step t:

I Choose action at , with average reward ui for 1 ≤ i ≤ N.
I Receive reward Xi,t .

I Denote u∗ = maxi∈1...K ui . Then, the pseudo-regret is defined
as:

REGT = Tu∗ − E

[
T∑
i=1

ut

]
.

I Key Theme: Exploitation vs Exploration.
I Exploitation: Choose arm with highest empirical mean reward.
I Exploration: Test other arms with potentially higher mean

reward.

11 / 91

Multi-armed Bandit Problem: UCB1

I UCB1 Algorithm:
I Play each action j once.
I For each round t, play the action j maximizing:

x̄j +

√
2 log n

nj

I x̄j is the average observed reward for j .
I nj is the number of times j has been played so far.

Theorem Suppose UCB1 is run on game with N actions, each
with reward Xi ,t ∈ [0, 1]. The expected regret is at most
O(
√
NT logT).

12 / 91

Dueling Bandits

I Most closely related to Coactive Learning is the dueling
bandits problem.

I Set of N bandits (arms, actions) denoted {bi}
I At each time step t:

I Choose two bandits bi and bj to duel.
I Receive feedback as a stochastic comparison of the bandits,

which can be used to construct a pairwise ordering.

I Goal is the find the best bandit b∗.

13 / 91

Dueling Bandits

I Probability that bi beats bj in a “duel” depends only on i , j
(stationary over time) and is unknown.

I Probability that bi beats bj is P(bi > bj) = ε(bi , bj) + 1/2,
with ε(bi , bj) ∈ (−1/2, 1/2).

I Can be interpreted as fraction of users that prefer bi to bj .
I Duels are independent.

I Regret is defined as:

REGT =
T∑
i=1

avg{ε(b∗, bi), ε(b∗, bj)}.

I Can show expected regret of at most O(K
ε1,2

logT), where ε1,2
is ε between best and second best bandit.

I Difference between dueling bandits and Coactive Learning is
that only bi is given to user, and feedback determines bj ,
which is guaranteed to be better.

14 / 91

Summary of Problems

I Play for T rounds.

I Set of N possible arms/actions.

Problem Action Feedback

Expert Advice Chooses arm (expert) Reward for every arm
Multi-armed Bandit Chooses arm Reward for chosen arm
Dueling Bandit Chooses two arms (bandits) The better arm
Coactive Learning Chooses arm Any better arm

Table 1: Summary of Related Problems.

15 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

16 / 91

Coactive Learning Model

I Want to model (in rounds) interaction between learning
system and user, where both system and user want to obtain
good results

I At reach round t:
I System observes context xt ∈ X .
I Presents a structured object yt ∈ Y.
I User returns an improved object ȳt ∈ Y

I The utility of yt ∈ Y to the user for context xt ∈ X is
described by utility function U(xt , yt).

I Improved object ȳt satisfies,

U(xt , ȳt) > U(xt , yt)

17 / 91

Coactive Learning Model

I User performs an approximate utility-maximizing search over
some user-defined subset Ȳt of all possible Y.

I User is only approximately rational, however, so ȳt is typically
not the optimal label

y∗t := argmaxy∈YU(xt , y)

I User is assume to provide reliable preference feedback.
However, doesn’t know the cardinal utility U when generating
feedback.

I Very different from supervised learning approaches which
require (xt , y∗t).

18 / 91

Coactive Learning Model

I Aim of algorithm is to present objects with utility close to y∗t .

I Whenever, the algorithm presents an object yt under context
xt , we say that it suffers a regret U(xt , y∗t)−U(xt , yt) at time
step t.

I Consider average regret suffered over T steps,

REGT =
1

T

T∑
t=1

(U(xt , y
∗
t)− U(xt , yt))

I Goal is to minimize REGT . Note: Real value of U is never
observed by the learning algorithm, but only semi-revealed by
preferences.

19 / 91

Quantifying Feedback Quality

I Quantify feedback quality by how much improvement ȳ
provides in utility space.

I Say that user feedback is strictly α-informative when the
following inequality is satisfied:

U(xt , ȳt)− U(xt , yt) ≥ α(U(xt , y
∗
t)− U(xt , yt))

for some α ∈ (0, 1].

I Means that utility of ȳt is higher than yt by some fraction α
of maximum difference.

20 / 91

Quantifying Feedback Quality

I Feedback is α-informative once we introduce slack variables:

U(xt , ȳt)− U(xt , yt) ≥ α(U(xt , y
∗
t)− U(xt , yt))− ξt

I Even weaker: feedback is expected α-informative if
expectation achieves positive utility gain:

Et [U(xt , ȳt)− U(xt , yt)] ≥ α(U(xt , y
∗
t)− U(xt , yt))− ξ̄t

I Expectation is over the user’s choice of ȳt given yt under
context xt (i.e. distribution Pxt [ȳt |yt])

21 / 91

Study: User Clicks

I Experimentally validate that user behavior implies reliable
preferences.

I Subjects (16 undergraduate students) were asked to answer
10 questions (5 informational, 5 navigational) using the
Google search engine.

I Used following strategy to infer rankings ȳ:
I Prepend to ranking y for each query all results that the user

clicked.
I If Google gave rankings [A, B, C, D, ...], and user clicks B and

D, then inferred ranking becomes [B, D, A, C, ...].

22 / 91

Study: User Clicks

I Measure utility in terms of retrieval quality from Information
Retrieval

DCG@10(x, y) =
10∑
i=1

r(x, y[i])

log i + 1

I r(x, y[i]) ∈ [0...5] is the normalized relevance score of the i-th
document (ground truth assessed by human assessors).

I Want that feedback ranking ȳ better than rankings y

DCG@10(x, ȳ) > DCG@10(x, y)

23 / 91

Study: User Clicks

I Had to confirm that quality of feedback was not affected by
quality of current prediction.

I 3 User Groups (each ≈ 1/3 of entire sample) received
prediction in 3 different orderings:

I Normal: Top 10 results in normal order.
I Reverse: Top 10 results in reverse order.
I Swapped: Top 2 results are swapped

24 / 91

Study: User Clicks

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4 -3 -2 -1 0 1 2 3 4 5

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

DCG(x,ybar)-DCG(x,y)

Normal Condition
Swapped Condition
Reversed Condition

All Conditions

Figure 2: Cumulative distribution of utility differences

I CDF shifted right of 0 implies that implicit feedback improves
utility.

25 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

26 / 91

Coactive Learning Algorithms

I Model utility function with linear model

U(x, y) = w>∗ φ(x, y)

I w∗ ∈ RN is an unknown parameter vector
I φ : X × Y → RN is a joint feature map.

I If x were queries, and y rankings, then joint features could
include relevancy of documents.

I Want ||φ(x, y)||`2≤ R for any x ∈ X and y ∈ Y.

27 / 91

Preference Perceptron

I Maintains a weight vector wt which is initialized to 0

I In each time step t, updates weight vector wt in the direction
φ(xt , ȳt)− φ(xt , yt).

28 / 91

Preference Perceptron - Bounds

Theorem The average regret of the preference perceptron
algorithm can be upper bounded, for any α ∈ (0, 1] and for any w∗
as follows:

REGT ≤
1

αT

T∑
t=1

ξt +
2R||w∗||
α
√
T

.

I Recall: Feedback is α-informative

U(xt , ȳt)− U(xt , yt) ≥ α(U(xt , y
∗
t)− U(xt , yt))− ξ̄t

I Recall: ||φ(x, y)||`2≤ R

29 / 91

Preference Perceptron - Proof

First, prove ||wT+1||2≤ 4RT 2.

w>T+1wT+1 = w>TwT + 2w>T (φ(xT , ȳT)− φ(xT , yT))

+ (φ(xT , ȳT)− φ(xT , yT))>(φ(xT , ȳT)− φ(xT , yT))

≤ w>TwT + 4R2

≤ 4R2T

I First line is application of update rule.

I Second line is from choice of yt = argmaxy∈Yw>t φ(xt , y), and
||φ(x, y)||≤ R

I Third line is from repeated application of inequality, starting
from w>1 w1 = 0.

30 / 91

Preference Perceptron - Proof

Next, bound
∑T

t=1 (U(xt , ȳt)− U(xt , yt)).

T∑
t=1

(U(xt , ȳt)− U(xt , yt)) = w>T+1w∗ ≤ ||wT+1|| ||w∗||

≤ 2R
√
T ||w∗||.

I Observe the property that

w>T+1w∗ = w>Tw∗ + (φ(xT , ȳT)− φ(xT , yT))>w∗

=
T∑
t=1

(U(xt , ȳt)− U(xt , yt))

I First inequality from Cauchy-Schwarz.

31 / 91

Preference Perceptron - Proof

Bound REGT .

α

T∑
t=1

(U(xt , y
∗
t)− U(xt , yt))−

T∑
t=1

ξt ≤ 2R
√
T ||w∗||,

I Assume that α-informative model of feedback.

I If the user feedback is strictly α-informative, then all slack
variables vanish and REGT = O(1/

√
T).

32 / 91

Preference Perceptron - Lower Bound

Lemma For any coactive learning algorithm A with linear utility,
there exist xt , objects Y and w∗ such that REGT of A in T steps
is Ω(1/

√
T).

I Consider Y = {−1,+1}, X = {x ∈ RT : ||x||= 1}
I Define joint feature map φ(x, y) = yx

I Consider T contexts e1, . . . , eT , with each ei standard i-th
basis vector. Let y1, . . . yT be the sequence of outputs.

I Let w∗ = [−y1/
√
T − y2/

√
T · · · − yT/

√
T]>. Notice

||w∗||= 1.

I Let the user feedback on the tth step be −yt (always
α-informative with α = 1).

I Regret is 1
T

∑T
t=1(w>∗ φ(et , y∗t)−w>∗ φ(et , yt)) = Ω(1√

T
)

33 / 91

Preference Perceptron - Batch Update

I Sometimes, there are too high volumes of feedback to update
every round.

I Perform variant of algorithm that makes update every k
iterations. Uses wt obtained from the previous update until
the next update.

I Can show regret bound:

REGT ≤
1

αT

T∑
t=1

ξt +
2R||w∗||

√
k

α
√
T

34 / 91

Preference Perceptron - Expected α-Informative Feedback

I If we only want a bound on expected regret, we can use a
weaker Expected α-Informative Feedback.

I Can show regret bound

E[REGT] ≤ 1

αT

T∑
t=1

ξ̄t +
2R||w∗||
α
√
T

.

I Take expectations over user feedback to get:

E[w>T+1wT+1] ≤ 4R2T .

Rest of proof follows from application of Jensen’s inequality.

35 / 91

Convex Loss Minimization

I Can generalize results to minimize convex losses defined on
linear utility differences

I At every time step: there is an (unknown) convex loss
function ct : R→ R which determines the loss
ct(U(xt , yt)− U(xt , y∗t)) at time t.

I Functions ct are assumed to be non-increasing.
I Sub-derivatives of the ct ’s are assumed to be bounded (i.e.,

c ′t(θ) ∈ [−G , 0] for all t and for all θ ∈ R)

I The vector w∗ is assumed from a closed and bounded convex
set B with diameter |B|.

36 / 91

Convex Preference Perceptron

I Introduces rate ηt associated with the update at time t

I After every update, the resulting vector w̄t+1 is projected
back to the set B.

37 / 91

Convex Preference Perceptron

I Algorithm minimizes average convex loss. We have bound

1

T

T∑
t=1

ct(U(xt , yt)− U(xt , y
∗
t))

≤ 1

T

T∑
t=1

ct (0) +
2G

αT

T∑
t=1

ξt +
1

α

(
|B|G
2
√
T

+
|B|G
T

+
4R2G√

T

)
.

I ct(0) is the minimum possible convex loss

I Under strict α-informative feedback, average loss approaches
O(1/

√
T).

38 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

39 / 91

Structured Feedback: Learning to Rank

I STRONG VS. WEAK FEEDBACK: See how the regret of the
Preference Perceptron algortihm changes with feedback
quality

I Feedback of different qualities α was received in the following
way:

Given a predicted ranking yt a user would go down the list
and find five URLs. It is a requirement that when these URLs
are placed at the top of the list the resulting ȳt satisfied the
strictly α-informative feedback condition w.r.t. the optimal
w∗.

40 / 91

Structured Feedback: Learning to Rank

I The Preference Perceptron algorithm was used on the Yahoo!
learning to rank dataset (Chapelle & Chang, 2011). It
consists of query-url feature vectors (denoted as xqi for query
q and URL i), each with a relevance rating rqi that ranges
from 0 (irrelevant) to 4 (perfectly relevant).

I The joint feature map was defined as follows:

φ(q, y) =
5∑

i=1

xqyi
log(i + 1)

I y denotes a ranking such that yi is the index of the URL
which is placed at position i in the ranking. This measure
considers the top five URLs for a query q and computes a
score based on a graded relevance

41 / 91

Structured Feedback: Learning to Rank

I For query qt at time step t, the Preference Perceptron
algorithm presents the ranking yqt that maximizes wTφ(qt , y)

I The utility regret is given by

1

T

T∑
i=1

wT
∗ (φ(qt , y

qt∗)− φ(qt , y
qt))

42 / 91

Structured Feedback: Learning to Rank

I RESULTS:

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

t

a
v
g

.
u

ti
l
re

g
re

t

α = 0.1

α = 1.0

Figure 3: Regret based on strictly α-informative feedback

43 / 91

Structured Feedback: Learning to Rank

I RESULTS:

I The regret with respect to α = 1.0 smaller than the regret
with respect to α = 0.1.

I The regret approaches zero since there is no noise for both αs

I However, the difference in regret is much less than a factor of
ten. This can be explained by the fact that feedback was
stronger than expected.

44 / 91

Structured Feedback: Learning to Rank

I NOISY FEEDBACK: See how the preference perceptron
algorithm performs on noisy feedback

I Used the actual relevance labels provided in the Yahoo!
dataset for user feedback. Now, given a ranking for a query,
the user would go down the list inspecting the top 10 URLs
(or all the URLs if the list is shorter) as before. Five URLs
with the highest relevance labels (rqi) are placed at the top
five locations in the user feedback.

I This produces noisy feedback since no linear model can
perfectly fit the relevance labels on this dataset.

45 / 91

Structured Feedback: Learning to Rank

I RESULTS

10
0

10
1

10
2

10
3

10
4

0.4

0.6

0.8

1

1.2

1.4

1.6

t

a
v
g
.
u
ti
l
re

g
re

t

SVM

Pref. Perceptron

Figure 4: Regret vs time based on noisy feedback

46 / 91

Item Feedback: Movie Recommendation

I GOAL: Evaluate the preference perceptron on the atomic
prediction task of movie recommendation.

I Used the MovieLens dataset, which contained a million
ratings over 3090 movies rated by 6040 users.

I Users were divided into two sets. The first was used to obtain
a feature vector mj for each movie using SVD embedding for
collaborative filtering (Bell and Koren, 2007). The
dimensionality of these feature vectors and the regularization
parameters were chosen to optimize cross-validation accuracy

47 / 91

Item Feedback: Movie Recommendation

I The feature vectors mj were used to recommend movies to
the second set of users. For each user i in the second set a
best least squares approximation wT

i∗mj was found for the
users utility functions on the available ratings. This allows us
to compute the utility values for movies that were not rated
by user i .

I We can then also measure regret as

1

T

T∑
i=1

wT
∗ (mt∗ −mt)

where mt∗ is the best available movie and mt is the
recommended movie

48 / 91

Item Feedback: Movie Recommendation

I STRONG VS. WEAK FEEDBACK: Explore how the
performance of the Preference Perceptron changes with
feedback quality α

I A movie with maximum utility based on the current wt of the
algorithm was recommended, and the user returns as feedback
a movie with the smallest utility that still satisfied α
informative feedback according to wi∗.

I This was done for every user in the second set for 1500
iterations.

I Regret was calculated separately for each user and then all
regrets over all users were averaged.

49 / 91

Item Feedback: Movie Recommendation

I RESULTS:

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g

.
u

ti
l
re

g
re

t

α = 0.1

α = 0.5

α = 1.0

Figure 5: Regret based on strictly α-informative feedback

50 / 91

Item Feedback: Movie Recommendation

I NOISY FEEDBACK: Evaluate Preference Perceptron
performance when the user feedback does not match the
linear utility model used by the algorithm.

I Feedback is given based on the actual ratings when available.
In every iteration, the user returned a movie with one rating
higher than the one presented to her. If the algorithm already
presented a movie with the highest rating, it was assumed
that the user gave the same movie as feedback.

51 / 91

Item Feedback: Movie Recommendation

I RESULTS:

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

t

a
v
g
.
u
ti
l
re

g
re

t

SVM

Pref. Perceptron

Figure 6: Regret based on noisy feedback

52 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

53 / 91

Motivation

I In supervised learning, obtaining labels can be expensive.

I What is the fewest number of labels we can have to still
achieve good results?

54 / 91

Active vs. Passive

I In passive learning, simply train on labeled examples

I In active learning, the system can request labels for some
examples.

I Consider example of learning a 1D threshold:
I An active learner will need logarithmically many samples as a

passive learner, since he can pick points based on some variant
of binary search.

I In above example, active learner achieves exponential
advantage over passive counterpart.

55 / 91

Active vs. Passive: 1D Threshold

I We want to determine a threshold T ∈ [0, 1] based on given
examples.

Figure 7: 1D threshold problem.

I With supervised learning, number of examples needed to learn
within ε error is O(1ε)

I With active learning, get O(log
(
1
ε

)
). (can do a binary search

method)

56 / 91

Active Learning: Sampling Methods

I Learning system makes queries regarding an unlabeled training
example to an oracle, which then labels it for us.

I Stream-based Sampling:
I Receives training examples from a stream of data
I System chooses whether or not to ask the oracle to label the

sample.

I Pool-based Sampling:
I Small amount of labeled training examples and a large amount

of unlabeled training examples.
I Look at entire pool of training data to choose which to query

and label.
I Pick which to label via some greedy metric (uncertainty)

I Second paper deals with pool-based sampling.

57 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

58 / 91

Introduction

I Luo et al, Latent Structured Active Learning (2013)

I This paper is about applying active learning to general
structured prediction.

I Often when we predict structures, we need a lot of labels.
Active learning can solve this problem!

59 / 91

Key Contributions

I Previous work has focused on active learning cases with exact
inference.

I This paper gives approximate approaches for general graphical
models

I Provides general algorithm for efficient latent structured
prediction

I Provides two algorithms for active learning-based latent
structured prediction

I Demonstrates algorithms in 3D room layout prediction -
requires 10% of the labels

60 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

61 / 91

Max-Likelihood Structured Prediction

I Let X be the input space, with the corresponding structured
labeled space being S.

I Define φ : X × Y → RF to be the joint feature map to an
F -dimensional feature space.

I Let w be an F -dimensional weight vector.

I For an input x with label s, let the scoring function be

wTφ(x , s)

62 / 91

Max-Likelihood Structured Prediction

I Furthermore, we’ll consider the case where

pw (s | x) ∝ exp(wTφ(x , s))

with w being an F -dimensional weight vector, and
x ∈ X , s ∈ S.

I We want w such that if s ∈ S is a good label for x ∈ X , it
has a high score wTφ(x , s).

63 / 91

Supervised Setting

I We have a dataset D = {(xi , si)Ni=1}
I We have a task-loss function l(x ,s)(ŝ) for an estimate ŝ. This

describes the ”fitness” of an estimate and imposes structure
on our output.

I Using this, consider loss-augmented distribution

p(x ,s)(s | w) ∝ exp(wTφ(x , s) + l(x ,y)(s))

I Let’s break this down:
I Higher score means more probable
I Place more mass on estimates with high loss (makes the task

more difficult)

64 / 91

Supervised Setting

I We want to minimize the negative log-likelihood.

I This is given by

−L(s; x ,w) = − ln

p(w)
∏

(x ,s)∈D

p(x ,s)(s | w)


I Use p(w) ∝ exp(−|w |pp) as a prior on the parameters.

I Define the p-norm for w = (w1,w2, ...wF) to be

||w||pp=

(
F∑
i=1

wp
i

)1/p

I You get to choose p. For example, p = 2 would correspond to
the L2 norm.

65 / 91

Supervised Setting

I Plugging it all in, we get a cost function

C

p
||w ||pp+

∑
(x ,y)∈D

(
ε ln
∑
ŝ∈S

exp

(
wTφ(x , ŝ) + l(x ,y)(ŝ)

ε

)
−wTφ(x , s)

)

I Put in an ε as a temperature term.
I ε→ 0 makes it a simple max
I ε→ 1 makes it a normal log likelihood

I This is convex, but has a sum over exponentially many
possibilities ŝ

I There are various ways to solve this problem, covered in depth
in previous lectures

66 / 91

Dealing with Latent Variables

I What are latent variables?

I Formally, given D = {(xi , yi)}Ni=1} we say each pair has x ∈ X
and partial label data y ∈ Y ⊂ S.

I In the latent variable setting, we assume the label space is of
the form S = Y ×H with Y,H being non-intersecting
subspaces of S. H represents the ”labels” for the latent
variables.

67 / 91

Latent Variables

I We need to set up our likelihood and objective like before.

I Recall the task-loss function l(x ,y)(ŝ). Then, our
loss-augmented distribution is

p(x ,y)(ŷ | w) ∝
∑
h∈H

p(x ,y)(ŷ , ĥ | w) =
∑
h∈H

p(x ,y)(ŝ | w)

68 / 91

Latent Variables

Using the distribution to compute the likelihood, we get

C

p
||w||pp+

∑
(x ,y)∈D

(
ε ln
∑
ŝ∈S

exp

(
wTφ(x , ŝ) + l(x ,y)(ŝ)

ε

)

− ε
∑
ĥ∈H

exp

(
wtφ(x , y , ĥ) + lc(x ,y)(y , ĥ)

ε

))

I We have different task loss functions for labeled and partially
labeled.

I This is not convex.

69 / 91

Latent Variables

I How can we solve this objective?
I Follow Yuille & Rangarajan (2003) and upper bound the

concave part (the second term in the sum)
I Achieve upper bound via minimization over dual variables

I Will allow us to do an approximation with an
Expectation-Maximization (EM) approach rather than exact
inference

70 / 91

Latent Variables

I To make the minimization more tractable, use a joint
distribution q(x ,y).

I Also, we can often decompose the feature vector:

φk(x , s) =
∑

i∈Vk,x

φk,i (x , si) +
∑
α∈Ek,x

φk,a(x , sα)

I Here, Vk,x are the unary potentials for the feature k (i.e, weak
interaction in the graph)

I α ∈ Ek,x is a high-order variable interaction set in the k-th
feature.

71 / 91

Latent Variables

Claim The function

C

p
||w||pp+

∑
(x ,y)∈D

(
ε ln
∑
ŝ∈S

exp

(
wTφ(x , ŝ) + l(x ,y)(ŝ)

ε

)

− εH(q(x ,y))− Eq(x,y) [w
Tφ(x , (y , ĥ)) + lc(x , (y , ĥ)]

)
which is convex in w and q(x ,y) separately is an upper bound on
the previous cost function, ∀q(x ,y) ∈ the probability simplex ∆, H
the entropy.
Proof omitted

72 / 91

Latent Structured Prediction

Theorem The approximation of the program minimizing the
previous equation takes the form

73 / 91

Generic Latent Structured Prediction Algorithm

I Using the previous theorem, can solve the objective with
EM/CCCP (concave-convex)

74 / 91

Quick Summary

I In supervised setting, structured prediction understood

I In supervised latent variable setting, we have an algorithm for
structured prediction

75 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

76 / 91

Active Learning Algorithms

I In the active learning setting, we have a partially labeled
dataset D = {(xi , yi)}NL

i=1 with xi ∈ X , yi ∈ Y ⊂ S.

I We assume latent variable structure, so S = Y ×H.The
information h ∈ H is the latent part.

I We also have an unlabeled set DU = {(xi)Nu
i=1}.

77 / 91

Quantifying Uncertainty

I We need some measure of uncertainty to determine which
point to query.

I Entropy given by

H(di) = −
|Hi |∑
hi=1

di (hi) log di (hi)

I di s are the local beliefes

78 / 91

Active Learning Algorithms

I What part of the graph should we label to get the best model
with the least supervision?

I Select random variable in graph to label based on local
entropies.

I This is a measure of uncertainty in parts of the graph.

I Idea is to get labels for random variables of highest
uncertainty, update model, then query again.

79 / 91

Separate Active Algorithm

I Learns parameters based on labeled data first

I Then, perform inference of unlabeled data to find next
random variable to label, adds to labeled

80 / 91

Joint Active Algorithm

I Learns parameters based on labeled and unlabeled data

I Then, perform inference of unlabeled data to find next
random variable to label

81 / 91

How This Works

I Recall we have a closed form for entropy

H(di) = −
|Hi |∑
hi=1

di (hi) log di (hi)

I Compute over all random variables, pick the least certain one
to label (highest entropy)

I Separate vs. Active:
I Separate only learns based on labeled examples, then does

inference to get local beliefs
I Joint learns over all examples, so has local beliefs for all

random variable - can be more expensive

82 / 91

Outline

Online Structured Prediction via Coactive Learning
Introduction
Related Work
Coactive Learning Model
Coactive Learning Algorithms
Experiment

Active Learning Framework

Latent Structured Active Learning
Introduction
Max-Likelihood Structured Prediction
Active Learning
Experimental Validation

83 / 91

Experimental Evaluation

I TASK: Predict the 3D layout of rooms from a single image

I Using the Manhattan world assumption (the existence of three
dominant vanishing points which are orthonormal), and given
the vanishing points, this problem can be formulated as
inference in a pairwise graphical model composed of four
random variables.

I Performance is measured as the percentage of pixels that have
been correctly labeled as, left-wall, right-wall, front-wall,
ceiling or floor.

84 / 91

Experimental Evaluation

I RESULTS:

Figure 8: Parameterization and factor graph for the 3D layout
prediction task.

85 / 91

Experimental Evaluation

I RESULTS:

Figure 9:

86 / 91

Experimental Evaluation

I RESULTS:

Figure 10: Line segments and Orientation map. (a) Line segments,
vanishing points, and vanishing lines. (b) Orientation map. Lines
segments and regions are colored according to their orientation.

87 / 91

Experimental Evaluation

I RESULTS:

Figure 11: : Test set error as a function of the number of random
variables labeled, when using joint vs separate active learning. The
different plots reflect scenarios where the top k random variables are
labeled at each iteration (i.e., batch setting). From left to right k =
1, 4, 8 and 12

88 / 91

Experimental Evaluation

I RESULTS:

Figure 12: Test set error as a function of the number of random
variables labeled ((a)-(c)). Marginal distribution is illustrated in (d)
for different ε

89 / 91

Experimental Evaluation

I RESULTS:

Figure 13: Number of CCCP iterations as a function of the amount
of queried variables in (a) and time after specified number of active
iterations in (b) (joint) and (c) (separate).

90 / 91

Overall Takeaways

Online Structured Prediction via Coactive Learning

I Defined a Coactive Learning Model, with a notion of linear
utility and regret and algorithms that minimize it (preference
perceptron)

I Extended to minimize any convex losses (convex preference
perceptron).

Latent Structured Active Learning

I Reviewed latent structured prediction in a supervised setting.

I Designed active learning algorithms for latent structured
prediction, using entropy as a decider for what subsets of the
output space to label.

91 / 91

	Online Structured Prediction via Coactive Learning
	Introduction
	Related Work
	Coactive Learning Model
	Coactive Learning Algorithms
	Experiment

	Active Learning Framework
	Latent Structured Active Learning
	Introduction
	Max-Likelihood Structured Prediction
	Active Learning
	Experimental Validation

